217

APM series Power Meters

Installation and Operation Instruction V1.8

ACREL CO.,LTD

DECLARATION

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by nay means, electronic, mechanical photocopying, recording, or otherwise without prior permission of Acrel. All rights reserved.

This company reserve power of revision of product specification described in this manual, without notice.Before ordering, please consult local anget for the latest specification of product.

CONTENTS

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
_
-

1. Overview

APM series power meters of ACREL are power meters that are designed according to IEC standards and synchronized with international advanced technology.

APM series meters have full power measurement, energy statistics, analysis of power quality and network communications and other functions, are mainly used for comprehensive monitoring of the quality of power supply network.

This series of meters use a modular design, with a rich function of the external DI / DO module, AI / AO module, event recording (SOE) module with T-Flash (TF) card, network communication module, can achieve full power measurement of electrical circuit and monitoring of switch status, Dual RS485 with Ethernet interface can realize data copying of RS485 master station, eliminating the need for data switching exchange. PROFIBUS-DP interface can realize high-speed data transmission and networking function.

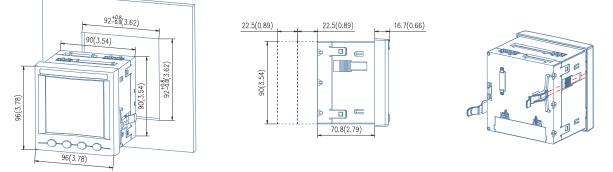
2. Type and specification

		Function	APM800	APM801	APM810
	Function				(class 0.5s)
	Total elec	trical measurement	\checkmark		\checkmark
Measured parameters	Four-quad	drant energy	\checkmark	\checkmark	\checkmark
Pulse output of energy	Pulse out	put of active/reactive energy	\checkmark	\checkmark	\checkmark
	Three-pha	ase current, active power, reactive power,			
Demand	real-time	demand of apparent power, and maximum	\checkmark	\checkmark	\checkmark
	demand (including time stamp)			
	Extremun	n of current, line voltage, phase voltage, active			
	power, rea	active power, apparent power, power factor,			
Extreme value statistics	frequency	, total harmonic of current, total harmonic of			\checkmark
	voltage in	this month and last month (including time stamp)			
	Unbalanc	e of current, line voltage, phase voltage	\checkmark	\checkmark	\checkmark
	Voltage p	hase angle, current phase angle			
	Total (odd	l, even) harmonic content of voltage and current	×	×	\checkmark
Power quality	Harmonic	c content of voltage and current (2-63 times)①	×	×	\checkmark
	Voltage ci	rest factor	×	×	\checkmark
	Telephone	e waveform factor	×	×	\checkmark
	Current K	-factor	×	×	\checkmark
	A total of	66 kinds of alarm types, each type can record the			
Alarm records	most rece	nt 16 alarm records, support extended records by	\checkmark	\checkmark	\checkmark
	TF card				
F (1	Record th	e most recent 128 event records, support extended	\checkmark	\checkmark	\checkmark
Event log	records by	y TF card		N	N
Communication	Modbus p	protocol	\checkmark	\checkmark	\checkmark
I/O	2 digital i	nputs + 2 digital outputs (2DI+2DO)	\checkmark	\checkmark	\checkmark
		8 digital inputs + 2 digital outputs with		\checkmark	\checkmark
	MD82	changeover contacts (8DI+2DO)	\bigvee	N	N
Extensions		TF card storage (alarm records, event records,			
	MLOG	electrical parameters and energy timing records,	\checkmark	\checkmark	\checkmark
		etc.)			

MA84	8 analog inputs (class 0.5) + 4 analog outputs (class 0.5) (8AI+4AO)	\checkmark	\checkmark	\checkmark
МСМ	1 RS485/Modbus-RTU, support master mode or slave mode	\checkmark	\checkmark	\checkmark
МСР	1 Profibus-DP		\checkmark	\checkmark
MCE	1 Ethernet, support Modbus-TCP, http, SMTP, DHCP protocol	\checkmark	\checkmark	\checkmark

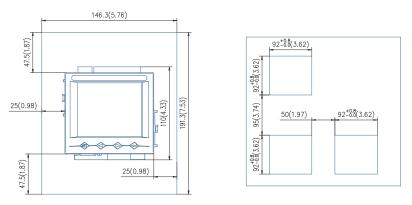
Note ①: Accuracy of 2~42 times harmonic measurement in the frequency range of 45~65Hz is 1%, accuracy of 43~63 times harmonic measurement in frequency 50Hz is 2%.

3. Technical Parameters


Technical Parameters		Index			
	Electrical network	Three-phase three-wire, three-phase four-wire, see the wiring diagram;			
	Frequency	45~65Hz;			
		Rated value: AC 100V, 110V, 400V, 690V;			
	Voltage	Overload: 1.2 times rated value(continuous); 2 times rated value /1			
Signal	voltage	second;			
		Power consumption: < 0.5VA (per channel);			
		Rated value: AC 1A, 5A, support 4 mm ² line access;			
	Current	Overload: 1.2 times rated value(continuous); 10 times rated value/1			
	Current	second;			
		Power consumption: < 0.5VA (per channel);			
	Voltage、current and power	class 0.5s/class 0.2s (APM800、APM810/APM801)			
Measurement accuracy	Active power	class 0.5s/class 0.2s (APM800、APM810/APM801)			
	Reactive power	class 2			
	Harmonic 1% (2rd~42nd), 2% (43rd~63rd)				
Switch inputs		Dry contact inputs, built-in power supply;			
Relay outputs	Contac	t type: open contact in main part, changeover contact in module;			
Teruy outputs		Contact capacity: AC 250V/3A DC 30V/3A;			
Pulse output of energy		Output mode: Optocoupler pulse with open collector;			
		Pulse constant: 4000 (5A), 8000 (1A) imp/kWh;			
Analog outputs	DC 0mA~20m	A $4mA \sim 20mA$ $0V \sim 5V$ $1V \sim 5V$ output, accuracy class 0.5%, load			
Analog inputs	$DC 0mA \sim 20$	resistance $\leq 500\Omega$; 0mA, 4mA \sim 20mA, 0V \sim 5V, 1V \sim 5V iutput, accuracy class 0.5%			
Storage card		Standard Capacity:4G,TF Card Up to 32G Capacity;			
	R	S485 interface/Modbus-RTU protocol and DLT645 protocol			
Communication	D145 :	Profibus-DP interface/Profibus-DP protocol;			
		terface (Ethernet) / Modbus-TCP, http, DHCP and other protocols;			
Power supply		rking range: AC/DC $85V \sim 265V$ or AC/DC $115 \sim 415V(P2)$;			
	Pow	er consumption: Power consumption of the main part \leq 15VA;			

		The power frequent	cy withstand voltage between the shell and the auxiliary power supply, each					
			input and output terminal group is AC 4kV/1min;					
		The power frequence	cy withstand voltage between the auxiliary power supply and each input and					
		each output terminal group is AC 2kV/1min;						
	Power	The power frequency withstand voltage between the voltage input and other input/output						
	frequency		terminal groups is AC 2kV/1min;					
	withstand	The power frequ	ency withstand voltage between the current input and other input/output					
Safety	voltage		terminal groups is AC 2kV/1min;					
		The power frequency	y withstand voltage between the relay output and other input/output terminal					
			groups is AC 2kV/1min;					
		The power free	quency withstand voltage between each terminal group of switch input,					
		com	munication, analog output and pulse output is AC 1kV/1min;					
	Insulation		Inputs _ outputs to the shall>100MO.					
	resistance	Inputs $1000000000000000000000000000000000000$						
Electromagnetic co	mpatibility	Meet IEC 61000 standard (Level 4);						
Protection le	evel	Display panel IP52						
		Operating temperature: $-20 \degree C \sim +65 \degree C$;						
Environme		Storage temperature: $-20^{\circ}C \sim +70^{\circ}C;$						
Environine	m	Relative humidity: $\leq 95\%$ without condensation;						
		Altitude: ≤2500m;						
		IEC 60068-2-1	Environmental Testing-Part 2-1:Tests Test A:Cold IDA					
		IEC 60068-2-2	Part 2-1:Tests Test B:Dry heat					
		IEC 60068-2-30	Part 2-30:Tests Test Db:Damp heat,cyclic(12+12h)					
		IEC 61000-4	Electromagnetic compatibility-Testing and measurement techniques					
0, 1, 1			Electrical safety in low voltage distribution system up to 1000V a.c.					
Standards	S		and1500V d.c -Equipment for testing, measuring or monitoring of					
		IEC 61557-12	protective measures- Part12:					
			Performances measuring and monitoring devices(PMD)					
		IEC 62053-22	Electricity metering equipment (a.c.)-Particular requirements -					
		1EC 02033-22	Part22:Static meter for active energy (class 0.2s and 0.5s)					

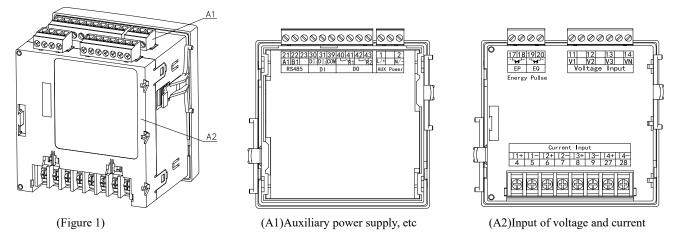
4. Installation and wiring instructions


4.1 Installation dimensions

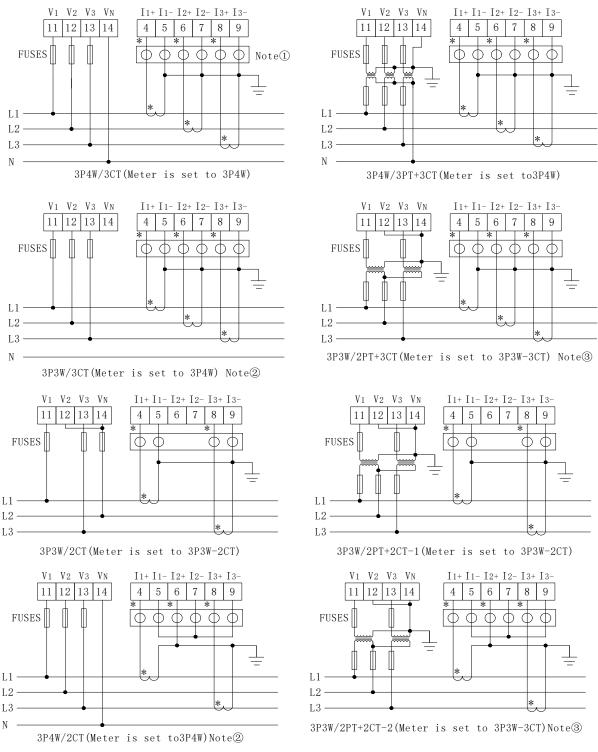
Meter and panel opening size(unit: mm(in))

Note: The maximum turning angle is 90° .

Multiple meter installation (unit: mm(in))



4.2 Wiring method


According to different design requirements, it is recommended to add a fuse (BS88 2A gG) to the power supply and voltage input terminals to meet the safety requirements of the relevant electrical specifications.

4.2.1 Main part

Terminal diagram: "4,5,6,7,8,9" is the current signal input terminal number; "11,12,13,14" the voltage signal input terminal number; "1, 2" is the meter auxiliary power terminal number. "21, 22" is the communication terminal number; "17, 18, 19, 20" is the energy pulse output terminal number; "30, 31, 39" is the switch input terminal number; "40, 41, 42, 43 " is the relay output terminal number. (Figure 1)

Wiring method of signal input:

Note①:<u>○○○○○○</u> This is a test terminal for shorting the secondary side of the CT. Note②:Only for balanced three-phase loads.

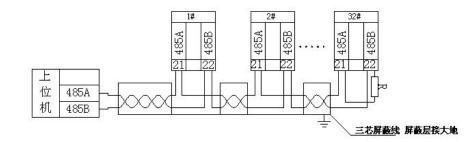
Note③:Phase B current is only displayed and does not participate in other calculations.

4.2.2 Module parts

Switch module

70	77	71	72	78	73	30	31	32	33	34	35	36	37	39
R1 R2				DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	COM 4		
继电器输出					继电器输出开关量输入									
Relay Output									Digi	tal In	put			

Analog input and output module


6	0	61	62	63	64	65	66	67	69	50	51	52	53	59
AI	1	AI_2	AI3	Al4	Al5	Al6	Al7	Al8	COM2	A01	A02	А0з	A04	СОМз
	模拟量输入										模打	以量车	俞出	
				A	\nalog	Inpu	t				Anal	og Ol	utput	

Ethernet module

242526	 	
	PROFIBUS DP	
A2 B2		
RS485		

An example of wiring for the communication is shown in the figure below:

Correct wiring method: Communication Cable shield is connected to earth.

上位机: Host computer

三芯屏蔽线: Three-core shielded wire

屏蔽层接大地: Shield is connected to earth

It is recommended to add a matching resistor between A and B at the end of the meter. The resistance range is $120\Omega \sim 10 \text{ k}\Omega$.

Note: 1.When the meter has Profibus function, for the related communication configuration and GSD file, please refer to the CD

delivered with the meter.

2. The second RS485 communication only supports Modbus 03 command.

5. Packaging

The package contains the following items: Host (including plug-in terminal block), mounting brackets, factory inspection report, certificate (anti-counterfeiting label), installation instructions.

When opening the product packaging, please check carefully whether there is any damage. If any damage occurs, please inform ACREL company or agent promptly, and keep the damaged external packaging. The company will promptly replace it.

6. Engineering Construction Notes

6.1 Voltage input

The input voltage should not exceed 120% of the rated input voltage of the product (100V or 110V or 400V or 690V). Otherwise, the PT should be used; a 1A fuse must be installed on the voltage input; the wiring method of the product must be set according to the PT wiring of the product. The wiring method is as follows:

Wiring method	Selection
2 elements	3P3W
3 elements	3P4W

6.2 Current input

The standard rated input current is 1A or 5A. It requires the use of an external CT (recommended to use a wiring strip, not directly connected to the CT, in order to facilitate disassembly); ensure that the input current corresponds to the voltage, the phase sequence is consistent and the direction is consistent; if There are other meters connected in the CT circuit used, the wiring should be connected in series.

Before removing the current input connection of the product, be sure to disconnect the CT primary circuit or short the secondary circuit!

6.3 Communication Wiring

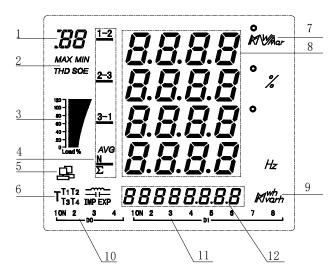
The meter provides asynchronous half-duplex RS485 communication interface, using MODBUS-RTU

protocol, various data information can be transmitted on the communication line.

Theoretically, up to 128 power meters can be connected simultaneously on a single line. Communication

address of each power meter can be set. When wiring, keep communication lines away from power cables or

other strong electric-magnetic field.

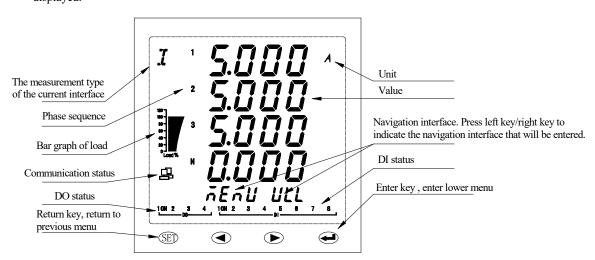

7. Operation instructions

7.1 Display description

APM series uses LCD segment LCD display, the following table shows the segment codes for different characters.

Α	b	с	d	E	F	g	Н	i,	Ί
\boldsymbol{R}	6	Ľ	ď	E	F	3	Н	J	1
J	К	L	М	n	0	Р	q	r	S
1	Ľ	L	ā	П	0	P	P	r	5
t	U	v	W	Х	У	Z	-	-	=
F	Ľ	L	<u>.</u>	L	Ч	2	-		-

The following figure shows the screen when all character fields and indications are all lit.



The following table is a description of all the measurement and indication.

No.	Display content	Instruction
		Identify what is displayed in the current measurement data display area 8:
1	I/U/P/Q/S/PF/d	Current / Voltage / Active Power / Reactive Power / Apparent Power / Power
		Factor / Demand
	IO/AL/SD	DI, DO, AI, AO status/alarm log/TF card status
	MAX/ MIN	Records of maximum / minimum
2	THD	Total harmonic distortion
	SOE	Sequence Of Event
3	50 50 60 60 60 100 100 100 100 100	Indicate the percentage of the current load current relative to the rated current, 90% to 110%, the histogram shows 100%, and so on.
	Display of load size	1 2 2 Values of ADC three rhose 1 2 2 2 2 1; Value of the AD DC CA
	1-2,2-3,3-1	1、2、3: Values of ABC three-phase, 1-2,2-3,3-1: Value of the AB, BC, CA three-line
4	AVG	Average value
	Ν	Neutral current
	Σ	Total power

5	Communication status symbol	Lights up to indicate that the current communication is being sent and received normally
6	IMP/ EXP//	Absorption total active energy / release total active energy / inductive reactive energy / capacitive reactive energy
7	Unit of measurement data	Current: A, kA; Voltage: V, kV; Active power: kW, MW; Reactive power: kVar, MVar; Apparent power: kVA, MVA; Percentage: %; Frequency: Hz
8	Display area of measurement data	Current, voltage, power, power factor, time, parameter settings, etc.
9	Units of energy	Active energy: kWh, MWh; Reactive energy: kVarh, Mvarh
10	DO status indication	The status of DO1-DO4. The remaining DO can be viewed under the main loop IO
11	DI status indication	The status of DI1-DI8. The remaining DI can be viewed under the main loop IO
12	Energy data area	Left and right navigation bar, corresponding to the left and right buttons menu; Electrical measurement display and parameter setting

The meter will display the model number and version information, and then the current interface will be displayed.

7.2 Panel description

Key description

The four keys are, the ESC key, the left key, the right key, and the enter key from left to right.

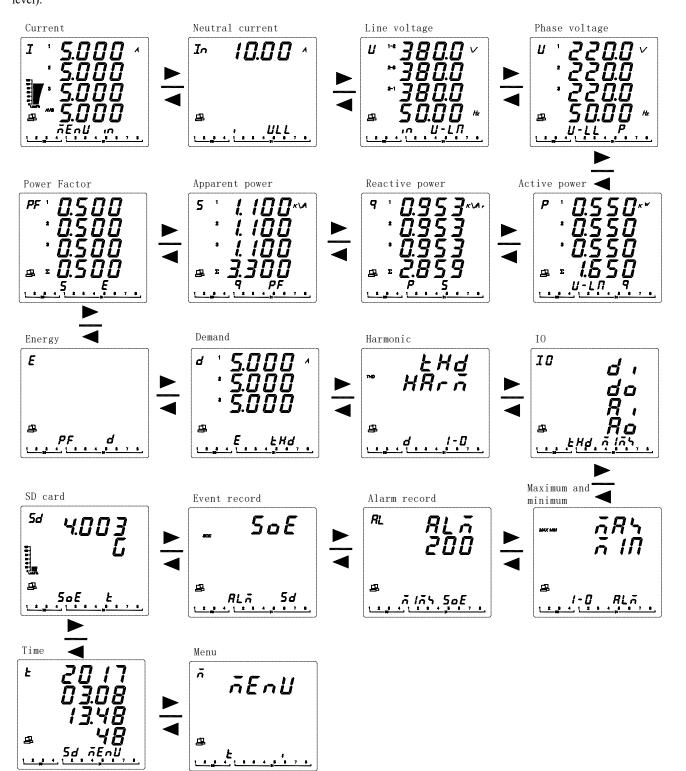
Key	Function			
ESC	Return to previous menu			
Left	Decrease parameter or switch navigation interface			
Right	Increase parameter or switch navigation interface			
Enter	Modify and confirm the parameters or enter the next menu			

Extended module indicator light description

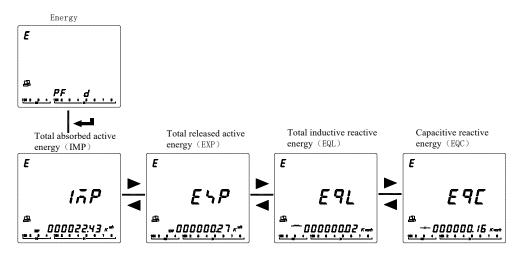
	Flashing (1s)	Flashing (0.2s)	Bright	Extinguished
(GREEN)	Module OK	Module error	/	Module is not running

7.3 Display overview

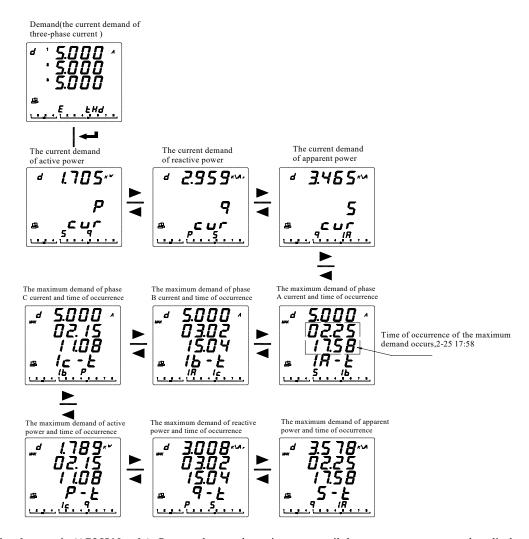
First level menu	Second level menu	Third level menu	Fourth level menu	Note
	SET (Settings)			See the system settings for details
		E (Clear energy)		See data reset for details
		dMd (Clear		
		demand)		
		ALM (Clear		
ñEnU	RST (Reset)	alarm record)		
MENU		SOE (Clear		
INER(C		event record)		
		MAX MIN		
		(Clear		
		extremum)		
		SD (Format TF		
		card)		
		Version,		
	DIAG (diagnosis)	Software		
		number, Module		
		version		
1	I_Unablance (Unbalance of current)			
I (current)	Current phase angle			
In				
In (neutral				
current)				
<i>u-LL</i>	U_Unablance (unbalance of line voltage)			
ULL (line voltage)	Offset (Line voltage offset)			
И-ГП	V_Unablance (Unbalance of phase voltage)			
ULN (phase	offset (Phase voltage deviation)			
voltage)	Angle (Voltage phase angle)			

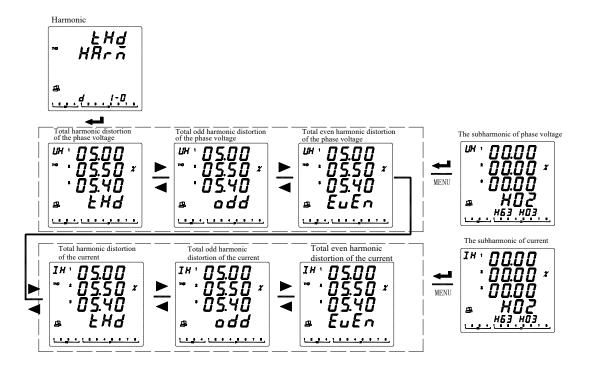

			1
D (artic			
P (active			
power)			
4			
Q (reactive			
power)			
5			
S (apparent			
power)			
	IMP (Absorb active energy)		
ļ Ļ	EXP (Release active energy)		See energy
	EQL (Inductive reactive energy)		view for
E (energy)	EQC (Capacitive reactive energy)		details
	Current active power demand		
	Current reactive power demand		
	Current apparent power demand		
	Phase A current maximum demand and		
	time of occurrence		
	Phase B current maximum demand and		
	time of occurrence		See demand
d (current demand for	Phase C current maximum demand and		view for
three-phase	time of occurrence		details
current)	Active power maximum demand and time		
currenty	of occurrence		
	Reactive power maximum demand and		
	time of occurrence		
	Apparent power maximum demand and		
	time of occurrence		
PF			
PF (power			
factor)			
	UH THD (Total harmonic distortion of		
	phase voltage)	2-63 harmonics	
	UH ODD (Total odd harmonic distortion	of three phase	
LXd	of phase voltage)	voltage	See
	UH EVEN (Total even harmonic		harmonics
THD	distortion of phase voltage)	2-63 harmonics	for details
	IH THD(Total harmonic distortion of current)	of three phase	
	IH ODD(Total odd harmonic distortion of	current	
		current	

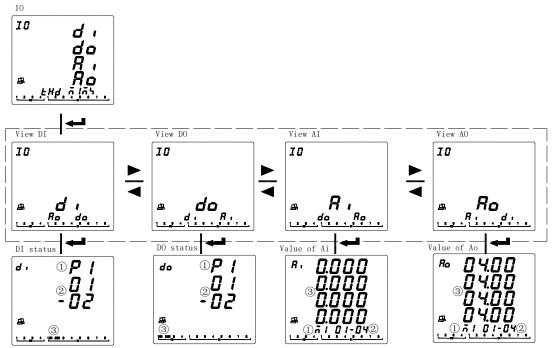
	current)			
	IH EVEN(Total even harmonic distortion	-		
	of current)			
	CF (Crest factor)			
	THFF (Telephone waveform factor)			
	KF(K factor)			
ΥM	DI (Digital input)			
10	DO (Digital output)			See IO for
IO (Inputs	AI (Analog input)			details
and outputs)	AO (Analog output)			
• *	I (Current)	Maximum of		
	U (Voltage)	this month and		
	P (Active power)	time of		
	Q (Reactive power)	occurrence;		
785 711	S (Apparent power)	Minimum of this		
2 10	PF (Power factor)	month and time		See the
	F (Frequency)	of occurrence;		maximum
MAX/MIN		Maximum of		and
(Maximum		last month and		minimum
and		time of		for details
minimum)	THD (Total harmonic distortion)	occurrence;		
		Minimum of last		
		month and time		
		of occurrence;		
	I AST ALM (last 16 clamp records)	Detailed alarm		
	LAST ALM (last 16 alarm records)	record		
		1 A (Phase A	Alarm	
		overcurrent)	details	
		2 B (Phase B		
		overcurrent)		
RLĀ		3 C (Phase C		See the
ALM	AT01 (Overcurrent alarm)	overcurrent)		alarm for
(Alarm		4 MAX		details
record)		(Maximum		uctails
		overcurrent)		
		5 N (Neutral		
		overcurrent)		
	AT02 (Undercurrent alarm)			
	AT13 (Other alarm)			
508				
JUL	Record of the last 128 events			
SOE (Event	record of the last 120 events			
record)				


50		
TF (TF card		
capacity)		
Ŀ		
TIME		
(system time)		
time)		

7.4 Measurement Parameters

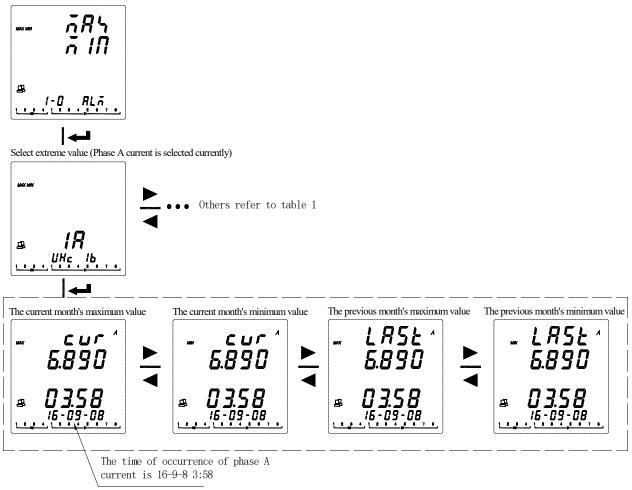

The power parameter overview: After the meter is powered on, the current is displayed. Press the left and right keys to switch the display to the following interface (some parameters need to press the enter key to enter the next level):


View energy: Press \Leftrightarrow button in the main interface until the current measurement data display area shows E, then press ENTER, press \blacklozenge button to switch the display: IMP (total absorbed active energy) $\leftrightarrow \rightarrow EXP$ (total released active energy) $\leftrightarrow \rightarrow \blacksquare$ EQL (total inductive reactive energy) $\leftrightarrow \rightarrow \blacksquare$ EQC (capacitive reactive energy).


View demand: Press ↔ button on the main screen until the current measurement data display area shows d. The measurement data area displays the current demand of three-phase current and press the enter key. Press ↔ key to view the current demand of active power, the current demand of reactive power, the current demand of apparent power, the maximum demand of three-phase current and time of occurrence, and the maximum demand of three-phase power and time of occurrence.

View harmonic (APM810 only): Press \clubsuit key on the main screen until the current measurement data display area shows THD, the measurement data area shows THD, HARM, and press the enter key. Press the \clubsuit key to view the total harmonic distortion of the voltage, the total odd harmonic distortion of the voltage, the total even harmonic distortion of the voltage even, the total harmonic distortion of the current, the total odd harmonic distortion of the current, and the total even harmonic distortion of the current. After you press the enter key at the total harmonic distortion of voltage (or current) interface, you can view the subharmonics.

View IO (Input and output): Press ↔ key on the main screen until the current measurement data display area shows IO, and the measurement data area shows DI, DO, AI, AO, press enter. Press the ↔ keys to select the information to be viewed (DI: digital input, DO: digital output, AI: analog input, AO: analog output).


(1) P1:Main part; M1:Module 1 M2:Module 2, and so on.

(2) Take DI for example, DI1-DI2 status is indicated at ③,others is similar.

3 Indicate status or values of DI/DO/AI/AO.

View maximum and minimum values: Press \clubsuit key on the main screen until the current measurement data display area shows MAX MIN and press enter. Press \clubsuit key to select the extreme value record of the electric parameters (I, U, P, Q, S, PF, F, THD, etc.) to be viewed and press the Enter key. Press the \clubsuit key to view the current month's maximum value, the current month's minimum value, the previous month's maximum value, and the time of occurrence of the selected electrical parameter. When a month span occurs, the extreme value of this month is automatically deposited into the extreme value of the previous month.

Maximum and minimum

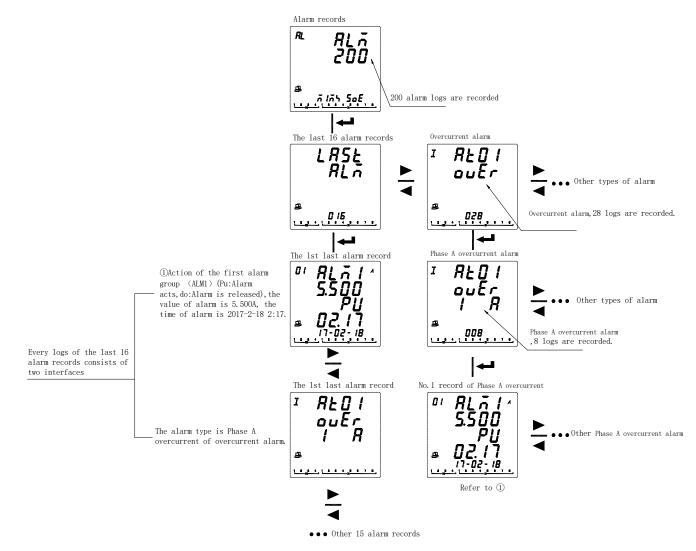

Symbol	Instruction	Symbol	Instruction	Symbol	Instruction
IA	Phase A current	РТ	Total active power	IHC	Total harmonic of
					Phase C current
IB	Phase B current	QA	Phase A reactive power	UHA	Total harmonic of
					Phase A voltage
IC	Phase C current	QB	Phase B reactive power	UHB	Total harmonic of
					Phase B voltage
IN	Neutral current	QC	Phase C reactive power	UHC	Total harmonic of
					Phase C voltage
IAV	Average current	QT	Total reactive power		
UA	Phase A voltage	SA	Phase A apparent power		
UB	Phase B voltage	SB	Phase B apparent power		
UC	Phase C voltage	SC	Phase C apparent power		
ULN	Average phase	ST	Total apparent power		
(AVG)	voltage				
UAB	Phase AB line	PFA	Phase A power factor		
	voltage				
UBC	Phase BC line	PFB	Phase B power factor		
	voltage				
UCA	Phase CA line	PFC	Phase C power factor		
	voltage				
ULL	Average line	PFT	Total power factor		
(AVG)	voltage				
PA	Phase A active	F	Frequency		
	power				
PB	Phase B active	IHA	Total harmonic of Phase		
	power		A current		
PC	Phase C active	IHB	Total harmonic of Phase		
	power		B current		

Table 1: Extreme Values and symbol description

View the alarm: Press ↔ on the main screen until AL is displayed in the current measurement data display area, ALM is displayed in the measurement data area, and then press the Enter key. You can view the last 16 alarm records (Last Alm) in chronological order and view alarm records by alarm type.

APM series of meters can record 66 kinds of alarms, divided into 13 kinds of alarm categories (AT01 overcurrent, AT02 undercurrent, etc., see Table 2), each type of alarm includes a number of alarm subcategories (for example, the AT01 overcurrent alarm includes Phase A overcurrent, Phase B overcurrent, Phase C overcurrent, etc., see Table 2). Each alarm subclass can record up to 16 alarm records. When there are 16 or more alarm records, the principle of first in, first out is implemented. The newly generated alarm will automatically overwrite the oldest record. Each alarm record contains the alarm value, alarm group, alarm action (action or recovery), and alarm time. If an expansion module (including a TF card) is purchased, all alarm data will be automatically synchronized to the TF card for storage.

Note: The TF card cannot record all more than 16 alarm records that were simultaneously generated within 2 seconds.

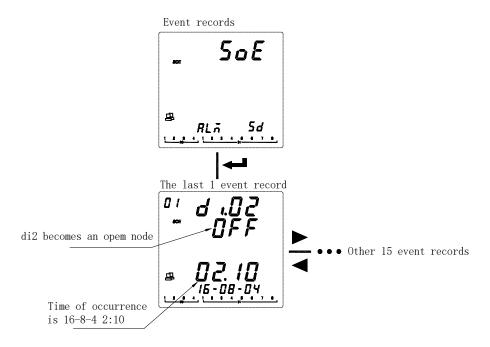

	Alarm su	bcategories		Alarm
Alarm categories	Symbol I	Symbol II	Alarm content	communication
				code
		1 A	Phase A overcurrent	0
AT01		2 B	Phase B overcurrent	1
(Overcurrent)	I Over	3 C	Phase C overcurrent	2
(Overeurient)		4 MAX	Maximum overcurrent	3
		5 N	Neutral overcurrent	4
		1 A	Phase A undercurrent	5
AT02		2 B	Phase B undercurrent	6
(Undercurrent)	I Unde	3 C	Phase C undercurrent	7
(Ondereutient)		4 MAX	Minimum undercurrent	8
		5 N	Neutral undercurrent l	9
		1 A	Phase A overvoltage	12
		2 B	Phase B overvoltage	13
		3 C	Phase C overvoltage	14
AT03	U Over	4 L-N	Maximum phase overvoltage	15
(Overvoltage)		5 AB	Phase AB overvoltage	16
		6 BC	Phase BC overvoltage	17
		7 CA	Phase CA overvoltage	18
		8 L-L	Maximum line overvoltage	19
		1 A	Phase A undervoltage	20
		2 B	Phase B undervoltage	21
		3 C	Phase C undervoltage	22
AT04	TTTT 1	4 L-N	Minimum phase undervoltage	23
(Undervoltage)	U Unde	5 AB	Phase AB undervoltage	24
		6 BC	Phase BC undervoltage	25
		7 CA	Phase CA undervoltage	26
		8 L-L	Minimum line voltage undervoltage	27
4705		1 P	Total active overpower	31
AT05	P Over	2 Q	Total reactive overpower	32
(Overpower)		3 S	Total apparent overpower	33
4704		1 P	Total active underpower	34
AT06	P Unde	2 Q	Total reactive underpower	35
(Underpower)		3 S	Total apparent underpower	36
AT07 (Demand	DIRG	1 Over	Overdemand alarm of active power	59
alarm)	Pd dMd	2 Unde	Underdemand alarm of active power	60
AT08 (Power		1 Over	Total over power factor	37
factor alarm)	PF PF	2 Unde	Total under power factor	38
AT09 (Total		1 IA	Over THD of Phase A current	41
Harmonic Alarm)	THD	2 IB	Over THD of Phase B current	42

Table 2: Alarm	classification	description:
----------------	----------------	--------------

		3 IC	Over THD of Phase C current	43
		4 UA	Over THD of phase A voltage	44
		5 UB	Over THD of phase B voltage	45
		6 UC	Over THD of phase C voltage	46
		1 IA	Over TEHD of Phase A current	47
		2 IB	Over TEHD of Phase B current	48
AT10 (Total Even	EVEN	3 IC	Over TEHD of Phase C current	49
Harmonic Alarm)	EVEN	4 UA	Over TEHD of Phase A voltage	50
		5 UB	Over TEHD of Phase B voltage	51
		6 UC	Over TEHD of Phase C voltage	52
		1 IA	Over TOHD of Phase A current	53
		2 IB	Over TOHD of Phase B current	54
AT11 (Total odd	0.11	3 IC	Over TOHD of Phase C current	55
harmonics Alarm)	Odd -	4 UA	Over TOHD of Phase A voltage	56
		5 UB	Over TOHD of Phase B voltage	57
		6 UC	Over TOHD of Phase C voltage	58
		1 di1	DI1 ON/OFF	62
4.5.1.2	1.	2 di2	DI2 ON/OFF	63
AT12	di	3 di3	DI3 ON/OFF	64
		4 di4	DI4 ON/OFF	65
		1 I-Ubl	Max unbalanced current	10
		2 U-Ubl	Max unbalanced phase voltage	28
		L-N		
		3 U-Ubl	Max unbalanced line voltage	29
	0.1	L-L		
AT13 (Other)	Oth	4 F Over	Over Frequency	39
		5 F Unde	Under Frequency	40
		6 I Loss	Current Loss	11
		7 U Loss	Voltage Loss	30
		8 PHA Rev	Phase Reversal	61
1	•			

View event record (SOE): When the DI/DO status is changed, event records can be generated. The main body can store up to 128 event records. If you purchased an expansion module (including a TF card), all event log data will be automatically synchronized to the TF card for storage.

Note: The TF card cannot record all more than 16 alarm records that were simultaneously generated within 2 seconds.

See the TF card data record: After power off, remove the TF card and use a card reader or other device to plug it into the computer for reading.

The data log files included in the TF card are: Alarm (Alarm data), Energy (Timed recording energy data), Harmonic (Harmonic data), Maintain (Basic parameter data), Record (Timed recording electrical parameter data), SOE (Event log data), APM800Config.ini (Parameter log file settings), ReadMe.txt (Guide).

Note: If the system time is set incorrectly, the TF card will not be recognized.

(1) Alarm data: Open the Alarm folder. The folder contains subfolders named "Year_Month" (For example: 2018_02). The subfolder contains the .csv record file named "Alarm Type" (eg: Over THD. Csv), you can view the alarm data. The log file contains: date; time; alarm group; alarm type; alarm value; alarm status.

(2) View the timed energy record data: Open the Energy folder, and the folder contains the .csv record file (2018_02.csv) named "Year_Month" to view the timed energy record data. The log file contains: date; time; positive active energy; reverse active energy; inductive reactive energy; capacitive reactive energy; positive active energy in T1 period; positive active energy in T2 period; positive active energy in T3 period; positive active energy in T4 period.

Note: The meter records 1 time energy data (primary side) by default for 1 hour. It also includes the positive active energy in each time period. The time interval can be set. The time interval unit is Hour.

ymbol Content	Symbol	Content
---------------	--------	---------

IMP	Positive active energy	IMP(T1)	Positive active energy in T1 period
EXP	Reverse active energy	IMP(T2)	Positive active energy in T2 period
EQL	Inductive reactive energy	IMP(T3)	Positive active energy in T3 period
EQC	Capacitive reactive energy	IMP(T4)	Positive active energy in T4 period

(3) View harmonic data: Open the Harmonic folder, which contains subfolders named "Year_Month" (For example: 2018_03), and the subfolder contains a .csv log file named "Year_Month_Date" (eg :2018_03_31.csv), you can view harmonic data. The log file contains: date; time; three-phase phase-separated voltage, current total harmonic value (maximum, minimum); three-phase phase-separated voltage, total odd current harmonic, total even harmonic value (maximum, minimum)); three-phase phase-separated voltage and current fractional harmonic values (maximum, minimum)); three-phase phase-separated voltage and current fractional harmonic values (maximum, minimum, recorded 2-63 harmonic data).

Note: The meter records 1 time harmonic data (primary side) by default for 1 minute, the time interval can be set, and the time interval unit is minute.

(4) View the main parameter change record: Open the Maintain folder, the folder contains the "Maintain.csv" log file, you can view the parameter change record. The log file contains: date; time; parameter type (such as: primary side voltage and current value; secondary side voltage and current value; 485 communication address and baud rate); new parameter value.

(5) View timed electrical parameter record data: Open the Record folder, which contains subfolders named "Year_Month" (eg 2018_03), and the subfolder contains the .csv log file named "Year_Month_Date" (Example: 2018_03_31.csv), you can view the timed electrical parameter record data. The log file is as follows:

Note: The meter records 1 time electric parameter data (primary side) by default for 1 minute, the time interval can be set, and the time interval unit is minute.

Symbol	Content	Symbol	Content	Symbol	Content
IA(A)	Phase A current	UBC(V)	Phase BC line voltage	PT(W)	Total active power
IB(A)	Phase B current	UCA(V)	Phase CA line voltage	QA(Var)	Phase A reactive power
IC(A)	Phase C current	U_LL_AVG(V)	Average line voltage	QB(Var)	Phase B reactive power
IN(A)	Neutral current	UA_UBL(%)	Unbalance of Phase A voltage	QC(Var)	Phase C reactive power
I_AVG(A)	Average current	UB_UBL(%)	Unbalance of Phase B voltage	QT(Var)	Total reactive power
IA_UBL(%)	Unbalance of Phase A current	UC_UBL(%)	Unbalance of Phase C voltage	SA(VA)	Phase A apparent power
IB_UBL(%)	Unbalance of Phase B current	U_LN_UBL(%)	Unbalance of phase voltage	SB(VA)	Phase B apparent power
IC_UBL(%)	Unbalance of Phase C current	UAB_UBL(%	Unbalance of AB line voltage	SC(VA)	Phase C apparent power
I_UBL(%)	Unbalance of	UBC_UBL(%)	Unbalance of BC	ST(VA)	Total apparent

	current		line voltage		power
UA(V)	Phase A	UCA_UBL(%	Unbalance of CA	F(Hz)	Frequency
	voltage) line voltage		r(nz)	riequency
UB(V)	Phase B	U_LL_UBL(Unbalance of line	PFA	Phase A power
	voltage	%)	voltage	ГГА	factor
UC(V)	Phase C		Phase A active	DED	Phase B power
	voltage	PA(W)	power	PFB	factor
U_LN_AVG(Average phase	PB(W)	Phase B active	PFC	Phase C power
V)	voltage	PD(W)	power	PFC	factor
UAB(V)	AD line veltage	DC(U)	Phase C active	DE	T ()
	AB line voltage	PC(W)	power	PF	Total power factor

⁽⁶⁾View event log data: Open the SOE folder, which contains the .csv log file named "Year_Month" (for example: 2018_03.csv) to view the event log data. The log file contains: date; time; DIDO serial number; action type.

Note: The data in the TF card is read-only, and the file record data is excel. Please open it with Microsoft Office Excel07 version and above 07 version. If it is lower than Microsoft Office Excel07 version or WPS, there will be some data loss.

7.5 System Settings

To set up the APM series meter, follow the instructions below:

① Press • at the measurement screen until Menu is selected and press ENTER.

- ② Press until Set is selected and press ENTER.
- ③ Enter your password. The default password is 0001 and the universal password is 0008.
- ④ Select the parameters to be modified.

Modify the parameters as follows:

①When a value or character is selected, flashing indicates that it can be modified.

(2) 1)For values that do not need to distinguish ones, tens, hundreds, thousands, use the \bullet keys to change

the currently selected value.

2) To achieve the method to increase or decrease the value of ones, tens, hundreds, thousands, you need to press ◄ to select the bit that need to be modified, and press ► to change the value of the selected bit.

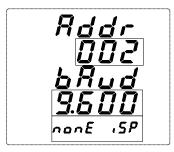
③ Press Enter to save the changes and move to the next area.

④ Press the ESC button before saving, prompt for saving will appear. Press the left or right key to select yes/no. When you select yes, press Enter to save the setting parameters. When you select no, press Enter will not to save the setting parameters.

First level	Second level	Third level	Range	
		Addr	Address:1-247	
	BUS 1 (First way)	Baud	Baud rate: 1200,2400,4800,9600,19200,38400	
		Mode	Mode: None 1sp (No parity, 1 stop bit)	
Bus			None 2sp (No parity, 2 stop bits)	
communicatio			Odd 1sp (Odd check, 1 stop bit)	
n)			Even 1sp (Even parity, 1 stop bit)	
11)	BUS2	Same as	Extended RS485 module	
		BUS1		
	DLT 645	Addr	645 Address: 0-9999999999999	
	Profibus	Addr	Profibus Address: 1-127	
	Rto.i	I Pri	Primary rated current: 1A-32760A	
		I Scal	=Pri*Scale (See current ratio setting)	
		I Sec	Secondary rated current rating: 1A, 5A	
		In Pri	Primary neutral rated current: 1A-32760A	
SYS (System)		In Scal	=Pri*Scal	
		In Sec	Secondary neutral rated current rating: 1A, 5A	
	Rto.u	U Pri	Primary rated voltage: 100V-1200kV	
		U Scal	=Pri*Scal	
		U Sec	Secondary rated voltage rating: 100V, 110V, 400V, 690V	

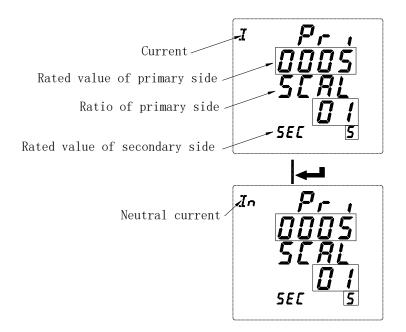
7.5.1 System Settings Overview (SET):

I		1	· · · · ·	
	Line		Wiring:	
			3P3W_3CT: Three-phase three-wire 3CT	
			3P3W_2CT: Three-phase three-wire 2CT	
			3P4W: Three-phase four-wire	
		U.nom	Nominal value of secondary voltage, used to calculate	
	nom		voltage deviation	
		F.nom	Nominal value of frequency used to calculate frequency	
-			deviation.	
	Puls		Pulse constant: 0-9999, see system setup section	
	AL1		The first group of alarms: see the alarm setting section	
ALM (Alarm)			for details.	
	AL2		The second group of alarms	
dMd	Wid		Window sliding time: 1, 2, 3, 5 minutes	
(Demand)	Pd		Period: 5-60 minutes	
			Calculation method of unbalance:	
			Absolute (Absolute value algorithm)	
			(The difference between the maximum value deviating	
Ubl	Math		from the average and average value) / average *100%	
(Unbalance)	Meth		Rated (Rated algorithm)	
			If the average value of the denominator in the above	
			equation is less than the rated value, the denominator is	
			the rated value.	
	DI	Init	Initial state: N-O (Normally open) / N-C (Normally	
		Init	closed)	
	DO	Init	Initial state: N-O (Normally open) / N-C (Normally	
			closed)	
Di-o (Digital		TYPE	ALM1 (Associated with alarm 1, see DO setting)	
inputs and			ALM2 (Associated with alarm 2, see DO setting)	
outputs)			COM (Communication control)	
		DLY	Effective when controlled by communication. When it is	
			set to 0, it is the level control mode. If it is not 0, it is the	
			pulse control mode. After the delay time is set, it will be	
			disconnected. Unit: 1 second.	
	AI	TYPE	Input Type: 0-20mA, 4-20mA, 0-5V, 1-5V	
		Dot	Decimal point: 0-3	
		High	High value of display: 0-9999	
		Low	Low value of display: 0-9999	
Ai-o (Analog	AO	TYPE	Output Type: 0-20mA, 4-20mA, 0-5V, 1-5V	
inputs and		SEL	Select the corresponding signal, and see the analog	
outputs)			output set.	
		High	Corresponding value of high point of analog output	
			(Primary value)	
		_	Corresponding value of low point of analog output	
		Low	(Primary value)	


		ofs	Offset (Based on 16mA/4V)
	IP		IP address
nET (Ethomot)	SUB		Subnet mask
nET (Ethernet)	GATE		Gateway
	PORT		Port number: 1-9999
Time	Minute, second, year, month, day		See the time setting section
PASS	set		Password of parameter setting: 0-9999
(Password)	rst		Reset password: 0-9999
LCD (Backlight)			0: Always bright Non-zero: After delaying the setted value, the backlight goes off in units of seconds.

7.5.2 Communication settings

1. After entering setup mode (the same settings below), press \blacklozenge until BUS is selected and press Enter.


2. Press the ◆ keys to select the communication parameters (bus1/bus2/DLT645/Profibus) and press the Enter key.

- 3. Set ADDR (communication address), range: 1-247 and press the Enter key.
- 4. Select bAUd (baud rate) and press the Enter key.
- 5. Select Mode (check mode and stop bit) and press the Enter key.
- 6. Press the ESC button to return to the R485 BUS interface.

7.5.3 System setting (Current ratio)

- 1. Press until SYS is selected and press the Enter key.
- 2. Press until Rto.i is selected and press the Enter key.
- 3. Input the rated value of primary side current(I Pri) and press the Enter key.
- 4.Enter the ratio of primary side current (SCALE), optional *01, *10 times, used to set the primary side current greater than 9999A, the actual rated value of primary side current is Pri*SCAL, If you need to set the primary side current to 10000A, you can set Pri=1000, SCAL=10;
- 5. Select the value of rated secondary side current (I Sec) and press the Enter key.
- 6. Enter the the rated value of primary side (In Pri), the ratio of primary side (SCAL), and the rated value of secondary side (In Sec) for the neutral current. Refer to steps 3, 4, and 5.

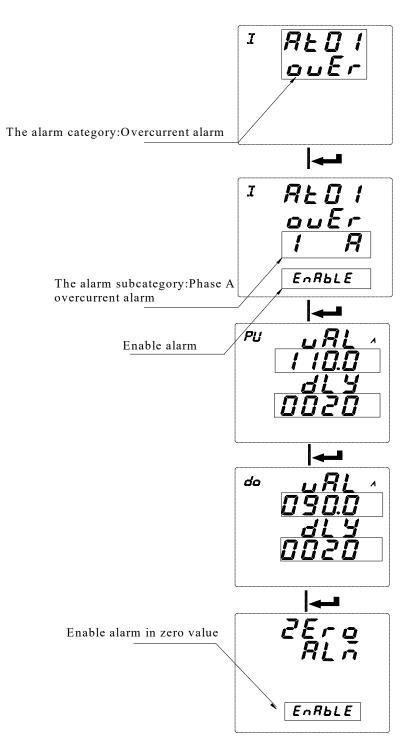
7.5.4 Voltage ratio setting refers to current ratio setting

For example: If the current input is connected by external CT and the rated value is 40A/5A, set the rated value of primary side current to 40A, the scale value to 1, and the rated value of secondary current to 5A. Neutral current setting is the same. If the voltage input is connected by external PT and the rated value is: 6000V/400V, then set the rated value of the primary voltage to 6000V, the scale value to 1, and the rated value of secondary voltage to 400V.

7.5.5 Pulse constant setting (Only APM801 can be set)

When the pulse constant is set to 0, the default is 8000 when the rated value of the secondary side current is 1A, and the default is 4000 when the rated value of the secondary side current is 5A. When the pulse constant is set to non-zero, the actual pulse constant is the setted value*100. For example, if the set value is 50, the actual pulse constant is 5000.

Note: ① The primary value must be greater than or equal to the secondary value.

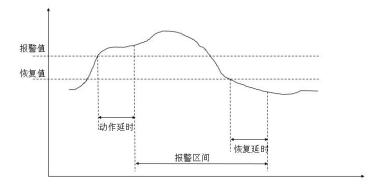

② Only the APM801 can set the pulse constant.

7.5.6 Alarm Settings

- 1. Press until ALM is selected and and press the Enter key.
- 2. Press key to select the alarm group (a total of two groups of alarms) and press the Enter key.
- 3. Press the \clubsuit keys to select the alarm category (Refer to Table 2 of 7.4 Alarm View) and press the Enter key.
- 4. Under the alarm category, select the alarm subclass (Refer to Table 2 of 7.4 Alarm View) and press Enter key.
- 5. Enable selected alarm type (ENABLE or disable selected alarm type (DISABLE) and press the enter key.
- 6. Input the value of alarm action (primary value). For some parameters, you can set the negative value. Press the

◆ key at the same time to switch the positive and negative signs and press the enter key.

- 7. Enter the delay time of alarm action and press the enter key.
- 8. Enter the recovery value of alarm (primary value) and press the enter key.
- 9. Enter the delay time of alarm recovery and press the enter key.
- 10. Enable alarm in zero value(low value of alarm is effective) and press the enter key.
- 11. Return to the third step and make other alarm settings.
- 12. Press the ESC button to return.


	Indication area symbol	Symbols of display area	Range
Enable settings			ENABLE, DISABLE
		VAL (Alarm value)	0-9999
	PU (Pick Up)	dLy (Alarm delay value, accurate to second)	0-9999
Parameter		VAL (Recovery value)	0-9999
settings	Do(Drop Out)	dLy (Recovery delay value, accurate to second)	0-9999
		ZERO ALM (Enable or disable zero alarm)	ENABLE, DISABLE

The parameter symbol description for settings

Note: For high alarm types, the recovered value must be less than the alarm value. For low alarm types, the

recovered value must be greater than the alarm value.

The following is a schematic of how the meter handles alarm parameters.

报警值: Alarm value

恢复值: Recovery value

动作时间: Action time

报警区间: Alarm interval

恢复延时: Delay time of recovery

Alarm description:

The meter has two groups of alarms. Each group of alarms can detect a variety of alarm conditions, including changes in the inputs of the electronic parameters, phase loss, reverse phase sequence, unbalance, and harmonics. The switch input and reverse phase sequence only need to set the enable bit, and other alarms need to set the alarm condition.

7.5.7 Alarm Type Description

7.5.7.1 Electric parameter alarm

Overcurrent: Zero alarm setting does not apply to overcurrent alarm. When the single phase current is greater than or equal to the action value and meets the set action delay time, the single phase overcurrent alarm starts; when the single phase current is lower than the set recovered value and meets the delay time. The single phase overcurrent alarm is released.

Undercurrent: When the single phase current is lower than or equal to the action value and meets the set action delay time, the single phase undercurrent alarm starts; when the single phase current is greater than the recovered value and meets the delay time, the single phase undercurrent alarm is released.

Note: When undercurrent alarm and zero alarm is enabled, single phase current is equal to 0, the alarm is valid; when undercurrent is enabled and zero alarm is forbidden, when single phase current is equal to 0, the alarm is invalid.

7.5.7.2 Phase current loss alarm

When any current (not all current) is equal to or lower than the action value and meets the delay time, phase A current loss alarm occurs; and when any of the following conditions occurs, the alarm is released:

The three-phase current is greater than the recovered value and meets the delay time

The three-phase current is lower than the phase loss action value.

7.5.7.3 Reverse phase sequence alarm:

The values of action and recovery and delay time are not applicable to the reverse phase sequence alarm.

When the phase sequence is not ABC normal phase sequence, an inverse phase sequence alarm is generated.

7.5.7.4 DI alarm

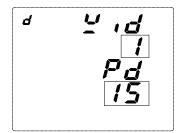
When the DI state changes from the initial state, an alarm is generated.

Examples are as follows:

Set Phase A overcurrent alarm of the first group of alarm enabled.

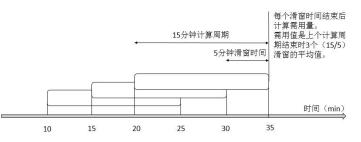
Action value: The action value is a primary value. For example, if the alarm value is set to 5.500A, when Phase A current value exceeds 5.500A, the alarm condition is triggered and the timer starts.

Action delay time: When the alarm condition is triggered, if Phase A current value exceeds 5.500A, an alarm record will be generated after the setted delay time (accurate to the second), Alarm group (alarm 1), alarm type (Phase A overcurrent), alarm time (eg: 2017-5-12 14:15:20) will be recorded. If DO is associated with this alarm, the DO acts (see DO settings).


Recovered value: The recovered value is a primary value. For example, if the recovered value is set to 5.400A, after Phase A overcurrent alarm has occurred, when Phase A current value is lower than 5.400A, the released alarm condition is triggered and the timer starts.

Recovered delay time: When the triggered alarm condition is released, if Phase A current value has been lower than 5.400A, the released alarm record will be generated after the setted delay time (accurate to second), and the alarm group (Alarm1), alarm type (Phase A overcurrent), the released alarm time (eg 2017-5-12 14:17:20) will be recorded. If DO is associated with this alarm, the DO returns to its initial state. It can be calculated that the alarm duration is 2 minutes.

Note: The alarm is invalid when both the action value and the recovered value are zero.


7.5.8 Demand setting

- 1. Press until you select dMd and press the Enter key.
- 2. Set the window time (Wid) (1, 2, 3, 5) and press the Enter key.
- 3. Set the demand period (Pd) (1-60), which must be set to an integral multiple of the sliding window time and press the Enter key.
- 4. Press the ESC button to return.

Demand calculation method:

APM series meters use the sliding window method to calculate the demand. In the sliding window calculation cycle, select a calculation period (Period) and a sliding window (Width). The calculation cycle of sliding window must be divided equally. For example, three 5-minute sliding windows (Wid = 5, Pd = 15) are set in a 15 minute calculation cycle. Refresh the current demand at the end of each sliding window. The schematic diagram is as follows:

15 分钟计算周期: 15 minutes of calculation period

5 分钟计算周期: 5 minutes of calculation period

每个滑窗时间结束后计算需用量:

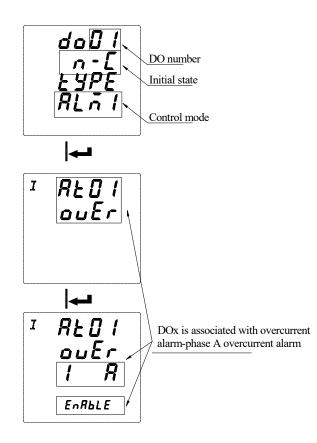
Calculate the demand after each sliding window time.

需用值是上个周期结束时3个(15/5)滑窗时间的平均值:

The demand value is the average value of the three sliding window time at the end of the last calculation period.

7.5.9 do settings

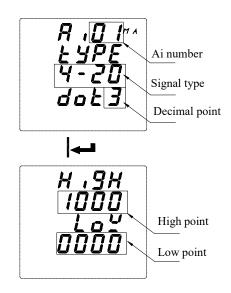
1. Press until dio is selected and press the Enter key.


- 2. Press ◆ until do is selected and press the Enter key.
- 3. Press the keys to select the do number (each main part contains 2 DO outputs and each MD82LOG module adds 2 DO outputs) and press the Enter key.
- 4. Press the 4 keys to select Normally Open (N-O) or Normally Closed (N-C) and press the Enter key.
- 5. Press \clubsuit key to select the do output control mode. ALM1 (alarm group 1) and ALM2 (alarm group 2) are the

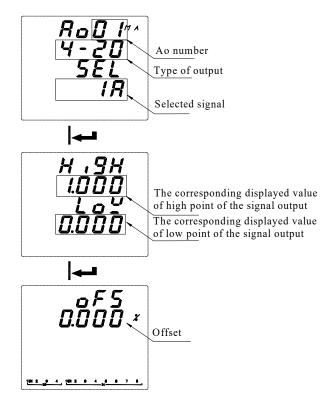
alarm controls, and COM is the communication control. Press the Enter key.

- 6. 1) If you select the alarm (ALM1 or ALM2) control, press ◆ key to select the alarm category, press the Enter key.Select the alarm subclass, press the Enter ke.Select whether to enable, press the Enter key. A DO can select multiple alarms for combined alarms.
 - If communication (COM) control is selected, modify the delay (DLY)time ranged 0-9999, unit 1 second.
 When it is set to 0, it is a level control. When it is not 0, it is a pulse mode control, and it is disconnected after the delay time is set.
- 7. Press the ESC button to return.

Note:


- When the output control mode of do1 is selected as ALM (ALM1 or ALM2), and is not associated (DISABLE)with any alarm of ALM or associated with all alarms (ENABLE), When any alarm of this group (ALM1 or ALM2) is generated, do1 will act.
- (2) When the output control mode of do1 is selected as ALM (ALM1 or ALM2) and associated (ENABLE) with Phase A overcurrent alarm and Phase A overpower alarm and not associated (DISABLE) with the other alarms. After the setting is completed, do1 acts when Phase A overcurrent or Phase A overpower alarm occurs.
- ③ Before selecting the alarm type associated with do, make sure that the alarm type is enabled in the alarm setting. If it is not enabled, the do does not act when this alarm condition occurs.

7.5.10 Analog input setting (valid with analog module)

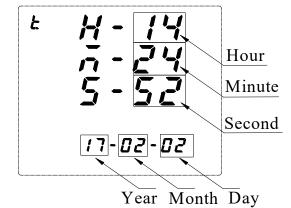

- 1. Press until Aio is selected and press the Enter key.
- 2. Press ◆ until Ai is selected and press the Enter key.
- 3. Press until the Ai channel to be modified is selected and press the Enter key.
- Select the input type (make sure the input type is current input or voltage input, current input can choose 0-20mA, 4-20mA, voltage input can choose 0-5V, 1-5V). Press the Enter key.
- 5. Select the decimal point of display and press the Enter key.
- 6. Set the high value of the signal input corresponding to displayed value and press the Enter key.
- 7. Set the low value of the signal input corresponding to displayed value and press the Enter key.
- 8. Press the ESC button to return.

For example: Ail is set to 4-20mA input and the decimal point is set to 1. The displayed value of high point of is set to 1000 and the displayed value of low point is set to 0. When the Ail signal input is 20mA, the displayed value is 100.0. When the signal input is 4mA, the displayed value is 0. When the signal input is 12mA, the displayed value is 50.0.

7.5.11 Analog output setting (Valid with analog module)

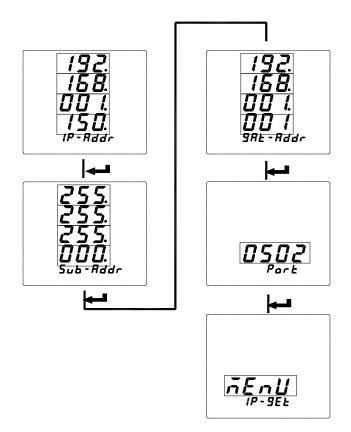
- 1. Press ◆ until Aio is selected and press the Enter key.
- 2. Press until Ao is selected and press the Enter key.
- 3. Press ◆ until the Ao channel to be modified is selected and press the Enter key.
- 4. Select the output type and press the Enter key.
- 5. Select the output corresponding signal (see Table 3) and press the Enter key.
- 6. Set the actual value of high point of the output corresponding to the signal and press the Enter key.
- 7. Set the actual value of low point of the output corresponding to the signal and press the Enter key.
- 8. Output offset, as a percentage of the reference value of 16mA (current output) or 4V (voltage output) and press the Enter key.
- 9. Press the ESC button to return.

Table 3: Output Signals


No.	Symbol	Instruction	No.	Symbol	Instruction
0	IA	Phase A current	13	QA	Phase A reactive power
1	IB	Phase B current	14	QB	Phase B reactive power
2	IC	Phase C current	15	QC	Phase C reactive power
3	UA	Phase A voltage	16	QT	Total reactive power
4	UB	Phase B voltage	17	SA	Phase A apparent power
5	UC	Phase C voltage	18	SB	Phase B apparent power
6	UAB	Phase AB line voltage	19	SC	Phase C apparent power
7	UBC	Phase BC line voltage	20	ST	Total apparent power
8	UCA	Phase CA line voltage	21	PFA	Phase A power factor
9	PA	Phase A active power	22	PFB	Phase B power factor
10	PB	Phase B active power	23	PFC	Phase C power factor
11	PC	Phase C active power	24	PF	Total power factor
12	РТ	Total active power	25	F	Frequency

For example:

When Ao1 is set to 4-20mA output, the signal is selected as IA (Phase A current), the corresponding signal of output high point is 5.000A, and the corresponding signal of output low point is 0.000A. When Phase A current value is 5A, Ao1 output is 20mA; when Phase A current value is 0A, Ao1 output is 4mA; when Phase A current value is 2.5A, Ao1 output is 12mA. If the actual output is 3.99mA at 0A, then the offset can be set to (4-3.99)/16 = 0.062% to make the zero output be 4mA.


7.5.12 Time setting

- 1. Press until Time is selected and press the Enter key.
- 2. Set hour (H), press the Enter key.
- 3. Set minute (M), press the Enter key.
- 4. Set second (S), press the Enter key.
- 5. Set year and press the Enter key.
- 6. Set month and press the Enter key.
- 7. Set day and press the Enter key.
- 8. Press the ESC button to return.

7.5.13 Network settings

- 1. Press until NET is selected and press the Enter key.
- 2. Enter the IP address and press the Enter key.
- 3. Enter the Subnet Mask (SUB) address and press the Enter key.
- 4. Enter the gateway address (GAT) and press the Enter key.
- 5. Enter the port address and press the Enter key.
- Set the acquisition mode of IP address, MANU for manual acquisition, DHCP for automatic acquisition, press the Enter key.
- 7. Press the ESC button to return.

7.5.14 Recording configuration of TF card

1. Insert the TF card into the computer, find the corresponding drive letter and open it.

- 2. Double-click to open APM800Config.ini.
- 3. [INTERVAL] is a configuration area of sampling interval.

Parameter (minute), indicates the recording interval of electrical parameter in minutes and range (1-30).

Energy (hour), indicates the recording interval of energy in hours and range (1-12).

[PARAMETER] is the configuration area to record the electrical parameter. For example: IA=1 means to

record Phase A current, IA=0 means not to record Phase A current.

[ENERGY] is the configuration area to record energy configuration. For example: IMP = 1 means to record absorbed active energy, and IMP = 0 means not to record absorbed active energy.

4. Save after configuration is complete.

7.5.15 Main settings

- 1. Press ► until DISP is selected and press the Enter key.
- 2. Press ► can choose the main setting.
- 3. Press the ESC button to return.

No.	Symbol	Instruction
00	Def	Default
01	Ι	Current
02	In	Current(N)
03	ULL	Voltage (L-L)

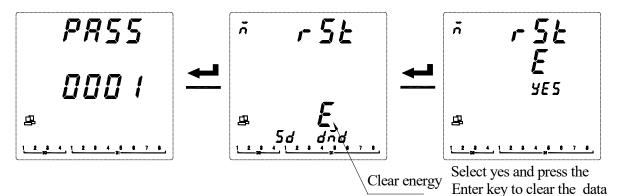
04	ULn	Voltage Average (L-N)
05	Р	Active Power
06	q	Reactive Power
07	S	Real Power
08	PF	PF
09	Е	Energy
10	Dmd	Demand
11	Thd	THD

7.6 Resetting data

In order to reset the data of APM series meter, please follow the instructions below:

①Press at the measurement screen until Mune is selected and press the ENTER key.

⁽²⁾Press ◆ until Rst is selected and press the ENTER key.


③Enter your password. The default password is 0001 and the universal password is 0008.

④Select the data to be reset and press the ENTER key.Refer to the following table.

^⑤Press left or right key to select yes to clear the corresponding data, and select no to cancel.

Symbol	Instruction
Е	Clear energy
dMd	Clear demand
ALM	Clear alarm records
SOE	Clear event records
MIMX	Clear maximum and minimum
SD	Format TF card

The following is an example of clearing energy:

8. Ethernet Communication Guide

8.1 Ethernet Parameter Modification

8.1.1 Modification by Button

Refer to 7.5 Network Settings of System Settings

8.1.2 Modification by Modbus Communication

Follow these steps to modify the Ethernet parameters:

- 1) Send the command 0xABCD to the register with the address 29 to enter the Ethernet setting mode; Send the command 0 to the register with the address 29 to exit the Ethernet setting mode, and the modified parameters are not saved at this time.
- 2) The new value can be written to the register after entering the Ethernet setting mode. If the Ethernet mode is not entered, the modification is invalid.
- 3) Send the command 0XABCD to the register with the address 37 to save the changes. After it is written successfully, the Ethernet module enters the restart mode. After the Ethernet module restarts successfully, the host can read the Ethernet parameters correctly.

8.1.3 Modification by Web Pages

Local network settings

Firstly, enter the operating system (take win7 as an example), use the mouse to click on the network icon on the bottom right corner, click on "Open Network and Sharing Center", click on the change adapter settings, right-click the local connection, click properties, double-click Internet Protocol Version 4 (TCP / IPv4), you will see the page shown below. Please follow the instructions, select "Use the following IP address", and fill in the IP address 192.168.1.110 (the same subnet), the subnet mask 255.255.255.0, the default gateway 192.168.1.1 (The DNS part can be left blank). Click OK on the page and click OK on the Local Area Connection Properties page to wait for system to complete configuration.

General						
You can get IP settings a this capability. Otherwise for the appropriate IP se	e, you need to					
Obtain an IP addres	s automatical	ly				
O Use the following IP	address:				-	
IP address:		192 . 16	8.1	. 110		
Subnet mask:		255 . 25	5.255	5.O	1	
Default gateway:		192 . 16	8.1	. 1		
Obtain DNS server a	address autor	natically				
Use the following Di	VS server add	resses:				
Preferred DNS server:]	
Alternate DNS server:			3•7			
Validate settings up	oon exit		[Adva	nced.	••223

Connect the Ethernet module and the computer with a twisted-pair B cable, power the meter. If the local connection on the bottom right corner of the computer monitor is connected at this point, you can continue to the next step. Otherwise, power off the meter, check the network cable and network settings.

WEB page configuration

Open Internet Explorer, enter the Ethernet IP address in the address bar (http://192.168.1.150/, factory default setting), and the login screen shown in the figure below will appear.

	Instantaneous R	eadings	
Parameter	Minimum	Present	Maxim
Load Current (A)			
la	0.000	0.000	0.000
lb	0.000	0.000	0.000
lc	0.000	0.000	0.000
Voltage, L-N(V)			
Ua	0.0	0.0	0.0
Ub	0.0	0.0	0.0
Uc	0.0	0.0	0.0
Voltage, L-L(V)			
Uab	0.0	0.0	0.0
Ubc	0.0	0.0	0.0
Uca	0.0	0.0	0.0
Power Real (W)			
Pa	0.05	0.05	0.05
Pb	0.05	0.05	0.05
Pc	0.05	0.05	0.05
PT Power	0.05	0.05	0.05
Reactive (VAR)			
Qa	0.05	0.05	0.05
Qb	0.05	0.05	0.05
Qc	0.05	0.05	0.05
QT	0.05	0.05	0.05
Power Apparent (VA)			
Sa	0.05	0.05	0.05
Sb	0.05	0.05	0.05
Sc	0.05	0.05	0.05
ST	0.05	0.05	0.05
Power Factor			
PFa	0.000	1.000	1.000
PFb	0.000	1.000	1.000
PFc	0.000	1.000	1.000
PF	-0.400	1.000	1.000
Frequency (Hz)	0.00	0.00	0.00

Click Setup to enter the Ethernet & TCP/IP configuration interface, as shown below:

	Ethernet	& T(CP/IP		
	MANUAL				
ist	IP Address:	192	168	8	. 150
	Subnet Mask:	255	255	255	. 0
	Default Gateway:	192	168	8	.1
il on Alarm					.1

After the modification is completed, click Apply to wait for it to take effect.

8.2 Extension of RS485 Communication

Extended 485 communication does not support the DLT-645 protocol and only supports the Modbus-RTU protocol.

8.2.1 Extending RS485 Communication as a Modbus Slave Station

When the second communication serves as a slave station, as the first channel RS485 communication, only supports the 0x03 command and does not support the 0x10 command. Refer to Chapter 8 for the address table.

8.2.2 Modbus TCP communication (Using ModScan software)

When using the Ethernet Modbus_TCP protocol, it supports 0x01 (read coil status), 0x02 (read input status), 03 (read hold register), 0x05 (write single coil). (Note: When using the 01, 02, and 05 commands, they all correspond to the APM8xx meter's own information. DI1 and DO1 correspond to the starting address 0.)

Connect	Remote	TCP/IP Serve	r	•
		IP Address:	192. 168. 1. 150	
		Service	502	
iguratio	on —		-Hardware Flow	Carton
aud	9600	*		
	8	*	Delay 5	DSR from sl ms after RTS before
	-		1	transmitting first
Parit	NONE	v		CTS from sla
Stop	1	÷	Delay 8	ms after last character before

The contents of the following address table are for Modbus TCP operation only. (Related to the slave information read by the user)

	· · · · · · · · · · · · · · · · · · ·				
Register (WORD)	Name	Resolution	Data (Read-write attribute)	type	Note
39992-39993	Group 32-1 slave status		Int32 (RO)		The high byte is first, the low byte is after, bit0 is the first group state, and 1 is the read failure, and the corresponding cache is cleared.
39994-39995	Group 64-33 slave status		Int32 (RO)		The same as above
39996-39997	Group 96-65 slave status		Int32 (RO)		The same as above
39998-39999	Group 128-97 slave status		Int32 (RO)		The same as above
40000-57999	Information area read from slave station		RO		Example is as follow
58000	Read slave station timeout	1ms	UInt16(RW)		Example is as follow
58001	Slave station access interval time	1ms	UInt16(RW)		Example is as follow
58002	Group 1 slave station address		UInt16(RW)		1-247 (Slave address station, does not take effect when set to 0)
58003	Group 1 communication start address		UInt16(RW)		0-65535
58004	Group 1 communication length		UInt16(RW)		(Does not take effect when set to 0)
58005-58385	Group 2-128 slave		UInt16(RW)		Same as 58002-58004

	station settings		
58386-58399	Reserved		
58400-58527	Failure rate	UInt16(RO)	Communication reads state of each
			group, the slave access failure
			rate of last 20 visits, 100% means
			the disconnection and clear cache
58600-58728	Number of errors	UInt16(RO)	The cumulative number of failures
			used to debug slave access
58800-58928	Number of	UInt16(RO)	The cumulative number of
	transmissions		transmissions used to debug slave
			access

E.g:

The settings are as follows: The first group slave station address is 1, the start address is set to 0, the communication length is 125, the second group slave station address is 2, the start address is 20, and the communication length is 125, the read information area 40000-40124 corresponds to the information of the first group of slave station addresses 0-125, 40125-40249 corresponds to the information of the second group of slaves station 20-144, and so on, when the communication length of the 128 groups of devices is 125, the corresponding information area is 40000 -55999. If fail to read the information from the slave station, the read information area corresponding to the slave station is 0.

Baud rate (bps)	Read slave station timeout	Slave station access interval time
	(Recommended setting time)	(recommended setting time)
1200	2500ms	10-20ms
2400	2000ms	10-20ms
4800	1500ms	10-20ms
≥9600	1000ms	10-20ms

8.2.2 Extending RS485 Communication as modbus Master

When the extended communication is used as a master station, a small serial port server can be implemented in conjunction with the Ethernet interface.

Extended serial port parameter configuration

Method 1:

Refer to bus1 in the communication settings of 7.5 system settings to modify the parameters of bus2.

Method 2:

According to the operation method of 9.1.3, after connecting the Ethernet module, click Setup->Serial Port to enter the serial port setting, and set the baud rate, check digit and response time. Click Apply when you are done to wait for it to take effect. As shown below:

	monitoring	Control			Diagnostics
Ethernet & TCP/IP			Serial Por	t	
Serial Port					
Device List		Transmission Mode:	Modbus RTU	×	
		Baud Rate:	38400		
E-Mail on Alarm		Parity:	None	•	
		Response Timeout:	1000	milliscond	
			Apply		

Modbus master parameter reading

According to the operation method of 9.1.3, after connecting the Ethernet module, click Setup->Device List to enter the Modbus master parameter reading, as shown below.

- 1. Number of Viewable: Users can configure up to 128 groups of 03 read commands of slaves.
- 2. Local ID: Meter Slave Address
- 3. Starting Register: Start Register Address
- 4. Number Of Register: The length of the register.

Note: If you need to modify the above parameters, please refer to 9.2.2 to modify the settings with the corresponding address by Modbus-TCP. After the 9.2.2 setting is completed, click Device List to refresh again.

The module will read the data from the slave according to this configuration. The read data is stored in registers starting with address 40000, which can be read by Modbus-Tcp.

For example: Read by Modbus-Tcp, the first one is to read 10 data starting from register 0 with slave address 1 and read 40000-40009, the second is to read 10 data starting from register 0 with slave address 2, read 40010-40019, and so on.

Monitoring		Centier	Coperation.
Ethernet & TCE/IP		Device List	
Serial Port		Number of Viewable Devices:	16
Device List	Local ID	Staring Register	Number Of Registers
E-Mail on Alarm	1	0	10
	2	0	10
	3	0	10
	4	0	10
	5	0	10
	6	0	10
	7	0	10
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0
	0	0	0

8.3 Modbus_TCP Communication Example (Using ModScan Software)

When using the Ethernet Modbus_TCP protocol, only the 03 (read holding register) command is supported.

Open the ModScan32 software and set it as shown below. Click Connect and select Remote TCP/IP Serever.

IP Address: The IP address of the Ethernet module (eg 192.168.1.150)

Service: Port number 502

Click OK button.

	Remote	TCP/IP Serve	er 💌
		IP Address:	192. 168. 1. 150
		Service	502
figuratio	n		
Baud	9600		Hardware Flow Control
Jauu			
rd	8	<u>*</u>	Delay 5 ms after RTS before transmitting first
Parit	NONE	-	🔽 Wait for CTS from sla
Stop	1	*	Delay <mark>8</mark> ms after last character before

9. Analysis of common fault

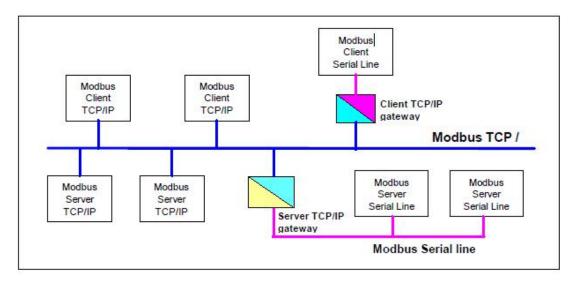
Fault content	Analysis	Note
Na diantay an navyan	Check whether the power supply voltage is in the working voltage	
No display on power	range.	
	Check the rated voltage and current of the primary side and secondary	
Incompating of	side is correct.	
Incorrect reading of	Check whether the wiring mode setting is consistent with the actual	
voltage and current	wiring.	
	Check voltage transformer, current transformer is in good condition.	
In compact in current on	Check whether the wiring mode setting is consistent with the actual	
Incorrect power or power factor	wiring.	
power factor	Check the voltage and current phase sequence is correct.	
	Check whether the address, baud rate, parity, etc. in the	
Communication is	communication settings are consistent with the host computer.	
abnormal	Check the RS485 converter is normal.	
	Parallel over 120 Ω resistance at the end of communication.	
Ethernet	Check whether the IP address, subnet mask, gateway address, and	
communication is	port number settings are correct.	
abnormal	Check whether the host computer and the meter network address is	
aonormai	the same network segment	
	As with the TF card, check if the TF card is loose or damaged (view	
	in communication or display).	
The extended module	Check whether the meter time is accurate. If the meter system time is	
flashes red	set incorrectly, the TF card will not be read.	
	If there is still a malfunction and the fault is not eliminated after the	
	meter is restarted, it is necessary to return to the factory for repair.	

Address: Yulv Road 253, Madong Industrial Park, Jiading, Shanghai Fax: (86)21-69158303 Service hotline: 800-820-6632 Website: www.acrel.cn E-mail: ACREL001@vip.163.com P.C.: 201801

Production base: Jiangsu Acrel Electric Appliances Manufacturing Co., Ltd, Address: Dongmeng Road 5, Nanzha Street, Jiangyin City Tel./fax: (86)0510-86179970 P.C.: 214405 E-mail: <u>JY-ACREL001@vip.163.com</u> 更改记录:

- V1.0 -> V1.1
- 1、增加不平衡算法、标称电压、频率;
- 2、修改、增加 Modbus 通讯地址。
- V1.1 -> V1.2
- 1、详述 SD 卡读取数据的操作步骤;
- 2、接线图增加中性线电流接线方式。
- V1.2 -> V1.3
- 1、增加液晶导航界面的图标显示。
- V1. 3—>V1. 4
- 1、SD卡用读卡器操作
- 2、系统时间设置错误,导致 SD 卡数据读取不到(故障解析)
- 3、前面概述加上电压电流相间角度
- 4、增加以太网模块 Modbus-TCP 的地址表
- V1.4->V1.5
- 1、N-C 改为常闭, N-O 改为常开
- V1.6-->V1.7
- 1、删除以太网邮件设置

Modbus-TCP/IP


1. General communication architecture

A communicating system over MODBUS TCP/IP may include different types of device:

---A MODBUS TCP/IP Client and Server devices connected to a TCP/IP network.

---The Interconnection devices like bridge, router or gateway for interconnection between

the TCP/IP network and a serial line sub-network which permit connections of MODBUS Serial line Client and Server end devices.

The MODBUS protocol defines a **simple Protocol Data Unit (PDU)** independent of the underlying communication layers. The mapping of MODBUS protocol on specific buses or networks can introduce some additional fields on the **Application Data Unit (ADU)**.

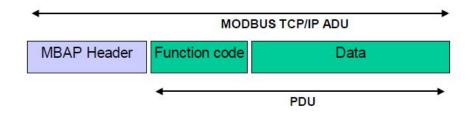
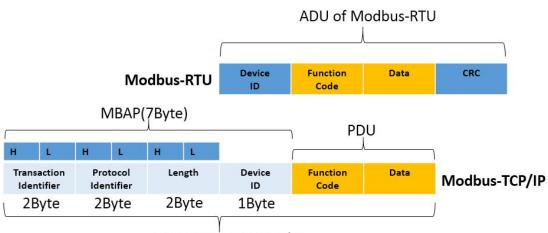

The client that initiates a MODBUS transaction builds the MODBUS Application Data Unit. The function code indicates to the server which kind of action to perform.

Figure 2: General MODBUS frame


2. MODBUS On TCP/IP Application Data Unit

This section describes the encapsulation of a MODBUS request or response when it is carried on a MODBUS TCP/IP network.

Figure 3:MODBUS request/response over TCP/IP

A dedicated header is used on TCP/IP to identify the MODBUS Application Data Unit. It is called the MBAP header (MODBUS Application Protocol header)

ADU of Modbus-TCP/IP

Figure 4: The diffrences of modbus frame between Modbus TCP/IP and Modbus RTU

3. MBAP Header descriptio

The MBAP Header contains the following fields:

Fields	Length	Description	Client	Server
Transaction	2Byte	Identification of a	Initialized by the	Recopied by the
Identifier		MODBUS Request /	Client	server from the
		Response transaction		received request
Protocol	2Byte	0x00:MODBUS protocol	Initialized by the	Recopied by the
Identifier			client	server from the
				received request
Length	2Byte	Number of following bytes	Initialized by the	Initialized by the
			client (request)	server (Response)
Device ID	1Byte	Identification of a remote	Initialized by the	Recopied by the
		slave connected on a serial	client	server from the
		line or on other buses		received request

The header is 7 bytes long:

Transaction Identifier:It is used for transaction pairing, the MODBUS server copies in the response the transaction identifier of the request.

For example : Client may creat the transaction identifier in sequence from 0x0001(0x00(H) 0x01(L)).

Protocol Identifier: It is used for intra-system multiplexing. The MODBUS protocol is identified by the value 0x00.

Length: The length field is a byte count of the following fields, including the Device ID and data fields.

For example: If a client want to read severial holding registers(function code 0x03),then the length will be 0x0006(Byte) including device ID(1Byte), function code (1Byte), start address(2Byte),number of registers(2Byte

Device ID:This field is used for intra-system routing purpose. It is typically used to communicate to a MODBUS or a MODBUS+ serial line slave through a gateway between an Ethernet TCP-IP network and a MODBUS serial line. This field is set by the MODBUS Client in the request and must be returned with the same value in the response by the server. For example: If the device ID of the meter is 1, then the byte of device ID should be 0x01.

All Modbus/TCP ADU are sent via TCP on registered port 502.

4. Example

In this case we will use the TCP communication tool to show that how to establish a connecting from the computer to power meter. In this scene power meter is as a server. Make sure the setting of Ethernet parameters in meter are same as following:

IP: 192.168.8.220

Port: 502

Device ID: 0x01

The PC is as a client, with the IP address (for example:192.168.8.110) which must be in the same subnet with the IP of the power meter. To read 0x000A holding registers from the address of 0x0000, take the following steps

1. Double click to open 'sokit.exe' ,and switch to the lable page of 'Client'.

2. Fill in the IP(192.168.8.220) and the port(502) of the network multi-functional power meter(server), and click the button of "TCP connect".

3. In 'Buf 0', fill in the frame([00 01 00 00 00 06 01 03 00 00 00 0A], hexdecimal characters) including '[]' to send, and click the button of 'Send'.

Server Transfer Client Notepad		
Network Setup		
Server IP: 192.168.8.220 - Port: 502 - TCP Connect UDP Channel		
		3
uf 0 [00 01 00 00 06 01 03 00 00 0A]		
		Send
uf 1:	1	Send
uf 2:		Send
uf 3:		Send
utput: Recv 29, Send 12	🔲 Write log 🚺	lear
12:26:24 MSG TCP connection to 192.168.8.220:502 opened!	175	
▲ 12:26:25 DAT < <12>		
[00 01 00 00 06 01 03 00 00 0A]		
▲ 12:26:25 DAT> <29>		

Explanation :

Transaction	Protocol	Length	Unit Identifier	Function code	Start	Number of
Identifier	Identifier				Address	Registers
00 01	00 00	00 06	01	03	<mark>00 00</mark>	<mark>00 0A</mark>
	modbus	bytes of the following	device ID	read holding		
		fields		registers		

1.Register listing

Register	Description	unit	Data Type	Parameters
0	Meter address(COMM1)		Int16 (RW)	Range :1-247
				0: 38400
				1: 19200
				2: 9600(default)
1	Baud rate(COMM1)		Int16 (RW)	3: 4800
				4: 2400
				5: 1200
				0: None Parity with one stop bit(default)
				1: None Parity with two stop bits
2	Parity(COMM1)	Int16 (RW)	2: Odd Parity with one stop bit	
				3: Even Parity with one stop bit
				Lower 7 bit:
				0:3P3W 2CT,
3	System Type		Int16 (RW)	1:3P4W,
				2:3P3W_3CT
4	Nominal Secondary Current		Int16 (RW)	 1A or 5A
5	Nominal Secondary Voltage L-L		Int16 (RW)	100V、110V、400V、690V
6	Nominal Primary Current	1A	Int16 (RW)	0-32760A
7-8	Nominal Primary Voltage L-L	1V	Int32 (RW)	0-1200KV
	Meter address(COMM2)			
				0: 38400
				1: 19200
			Int16 (RW)	2: 9600
10	Baud rate(COMM2,slave)			3: 4800
				4: 2400
				5: 1200
				0: None Parity with one stop bit
				1: None Parity with two stop bits
11	Parity(COMM2,slave)		Int16 (RW)	2: Odd Parity with one stop bit
				3: Even Parity with one stop bit
13	Neutral current secondary side rating		Int16 (RW)	1A or 5A
13	Neutral current primary side rating	1A	Int16 (RW)	1A-32760A
14		IA		0-9999(APM801 is valid) (When it is 0,
15	Pulse constant	100	Int16 (RW)	default value is used, 1A: 8000, 5A: 4000;
				When it is not 0, pulse constant = register $\frac{1}{2}$
16	Unhalance algorithm		Int16 (DW)	value *100)
16	Unbalance algorithm		Int16 (RW)	Unbalance algorithm(0: Rated, 1: Absolute)
18	Profibus address		Int16 (RW)	1-127
20	Year		Int16 (RW)	0-99
21	Month		Int16 (RW)	1-12
22	Day		Int16 (RW)	1-31
23	Hour		Int16 (RW)	0-23
24	Minute	53	Int16 (RW)	0-59

25	Second		Int16 (RW)	0-59
29	Enable change parameter of Ethernet from RS485 Port		Int16 (RW)	code: 0XABCD
30-31	IP Address		Int32 (RW)	Sample: 192.168.3.8 ADDR 30:C0A8H ADDR 31: 0308H
32-33	Subnet Mask		Int32 (RW)	Sample: 255.255.255.0 ADDR 32: FFFFH; ADDR 33: FF00H
34-35	Gateway		Int32 (RW)	Sample: 192.168.3.1 ADDR 34: C0A8H; ADDR 35: 0301H
36	Port Number		Int16 (RW)	0-9999
37	IP address allocation		Int16 (RW)	0: Manual; 1: Automatic (DHCP)
38	The code for Save the parameter of Ethernet		Int16 (RW)	code: 0XABCD
40	SD Storage State		Int16 (RO)	0,0x11: No SD Card 0x22: Bad SD Card 0x33: SD work well 0x44: Full storage 0x55: Formating 0x66: Error in Configuration File
41	SD Total capacity	1M	Int16 (RO)	Unit : Megabytes
42	SD Residual capacity	1M	Int16 (RO)	Unit : Megabytes
61	Nominal voltage	0.1V	Int16 (RO)	Secondary side nominal voltage for calculating voltage deviation
62	Nominal frequency	0.01Hz	Int16 (RO)	Nominal frequency used to calcula frequency deviation
242	Neutral current,	0.001A	Int16 (RO)	Secondary
243	Voltage A-N	0.1	Int16 (RO)	Secondary
244	Voltage B-N	0.1	Int16 (RO)	Secondary
245	Voltage C-N	0.1	Int16 (RO)	Secondary
246	Voltage A-B	0.1	Int16 (RO)	Secondary
247	Voltage B-C	0.1	Int16 (RO)	Secondary
248	Voltage C-A	0.1	Int16 (RO)	Secondary
249	Current, Phase A	0.001	Int16 (RO)	Secondary
250	Current, Phase B	0.001	Int16 (RO)	Secondary
251	Current, Phase C	0.001	Int16 (RO)	Secondary
252	Nominal Frequency	0.01Hz	Int16 (RO)	
253-254	Active Power, Phase A	0.01W	Int32 (RO)	Secondary
255-256	Active Power, Phase B	0.01W	Int32 (RO)	Secondary
257-258	Active Power, Phase C	0.01W	Int32 (RO)	Secondary
259-260	Active Power, Total	0.01W	Int32 (RO)	Secondary
261-262	Reactive Power, Phase A	0.01Var	<u> </u>	-

Reactive Power, Phase B	0.01Var	Int32 (RO)	Secondary
Reactive Power, Phase C	0.01Var	Int32 (RO)	Secondary
Reactive Power, Total	0.01Var	Int32 (RO)	Secondary
Real Power, Phase A	0.01VA	Int32 (RO)	Secondary
Real Power, Phase B	0.01VA	Int32 (RO)	Secondary
Real Power, Phase C	0.01VA	Int32 (RO)	Secondary
Real Power, Total	0.01VA	Int32 (RO)	Secondary
Active Power Factor, Phase A	0.001	Int16 (RO)	Secondary
Active Power Factor, Phase B	0.001	Int16 (RO)	Secondary
Active Power Factor, Phase C	0.001	Int16 (RO)	Secondary
Active Power Factor, Total	0.001	Int16 (RO)	Secondary
Active Energy In (EPI)	1WH	Int32 (RO)	Secondary
Active Energy Out (EPE)	1WH	Int32 (RO)	Secondary
Reactive Energy In(EQL)	1WH	Int32 (RO)	Secondary
Reactive Energy Out (EQC)	1WH	Int32 (RO)	Secondary
	Reactive Power, Phase CReactive Power, TotalReal Power, Phase AReal Power, Phase BReal Power, Phase CReal Power, TotalActive Power Factor, Phase AActive Power Factor, Phase BActive Power Factor, Phase CActive Energy In (EPI)Active Energy Out (EPE)Reactive Energy In(EQL)	Reactive Power, Phase C0.01VarReactive Power, Total0.01VarReal Power, Phase A0.01VAReal Power, Phase B0.01VAReal Power, Phase C0.01VAReal Power, Total0.01VAActive Power Factor, Phase A0.001Active Power Factor, Phase B0.001Active Power Factor, Phase C0.001Active Power Factor, Phase C0.001Active Power Factor, Phase B0.001Active Power Factor, Phase C0.001Active Power Factor, Phase C0.001Active Power Factor, Total0.001Active Energy In (EPI)1WHActive Energy Out (EPE)1WHReactive Energy In(EQL)1WH	Reactive Power, Phase C0.01 VarInt32 (RO)Reactive Power, Total0.01 VarInt32 (RO)Real Power, Phase A0.01 VAInt32 (RO)Real Power, Phase B0.01 VAInt32 (RO)Real Power, Phase C0.01 VAInt32 (RO)Real Power, Total0.01 VAInt32 (RO)Real Power, Total0.01 VAInt32 (RO)Active Power Factor, Phase A0.001Int16 (RO)Active Power Factor, Phase B0.001Int16 (RO)Active Power Factor, Phase C0.001Int16 (RO)Active Power Factor, Phase C0.001Int16 (RO)Active Power Factor, Total0.001Int16 (RO)Active Energy In (EPI)1WHInt32 (RO)Active Energy Out (EPE)1WHInt32 (RO)Reactive Energy In(EQL)1WHInt32 (RO)

Register	Description	Unit	Data Type	Parameters
1100-1101	Current, Phase A	0.001A	Int32 (RO)	Primary
1102-1103	Current, Phase B	0.001A	Int32 (RO)	Primary
1104-1105	Current, Phase C	0.001A	Int32 (RO)	Primary
1106-1107	Current, Neutral	0.001A	Int32 (RO)	Primary
1108-1109	Current, Average	0.001A	Int32 (RO)	Primary
1110	Current Unbalance, Phase A	0.1%	Int16 (RO)	Primary
1111	Current Unbalance, Phase B	0.1%	Int16 (RO)	Primary
1112	Current Unbalance, Phase C	0.1%	Int16 (RO)	Primary
1113	Current Unbalance, Max	0.1%	Int16 (RO)	Primary
1114	Current angle between IA and IB	0.1°	Int16 (RO)	
1115	Current angle between IB and IC	0.1°	Int16 (RO)	
1116	Current angle between IC and IA	0.1°	Int16 (RO)	
1120-1121	Voltage Phase A-N	0.1V	Int32 (RO)	Primary
1122-1123	Voltage Phase B-N	0.1V	Int32 (RO)	Primary
1124-1125	Voltage Phase C-N	0.1V	Int32 (RO)	Primary
1126-1127	Voltage Average L-N	0.1V	Int32 (RO)	Primary
1128-1129	Voltage Phase A-B	0.1V	Int32 (RO)	Primary
1130-1131	Voltage Phase B-C	0.1V	Int32 (RO)	Primary
1132-1133	Voltage Phase C-A	0.1V	Int32 (RO)	Primary
1134-1135	Voltage Average (L-L)	0.1V	Int32 (RO)	Primary
1136	Voltage Unbalance Phase A-N	0.1%	Int16 (RO)	Primary
1137	Voltage Unbalance Phase B-N	0.1%	Int16 (RO)	Primary
1138	Voltage Unbalance Phase C-N	0.1%	Int16 (RO)	Primary
1139	Voltage Unbalance, L-N	0.1%	Int16 (RO)	Primary
1140	Voltage Unbalance, Phase A-B	0.1%	Int16 (RO)	Primary
1141	Voltage Unbalance, Phase B-C	0.1%	Int16 (RO)	Primary
1142	Voltage Unbalance, Phase C-A	0.1%	Int16 (RO)	Primary

1143	Voltage Unbalance,L-L	0.1%	Int16 (RO)	Primary
1144	Voltage angle between UA and UB	0.1°	Int16 (RO)	
1145	Voltage angle between UB and UC	0.1°	Int16 (RO)	
1146	Voltage angle between UC and UA	0.1°	Int16 (RO)	
1150-1151	Active Power, Phase A	0.01W	Float (RO)	Primary
1152-1153	Active Power, Phase B	0.01W	Float (RO)	Primary
1154-1155	Active Power, Phase C	0.01W	Float (RO)	Primary
1156-1157	Active Power, Total	0.01W	Float (RO)	Primary
1158-1159	Reactive Power, Phase A	0.01Var	Float (RO)	Primary
1160-1161	Reactive Power, Phase B	0.01Var	Float (RO)	Primary
1162-1163	Reactive Power, Phase C	0.01Var	Float (RO)	Primary
1164-1165	Reactive Power, Total	0.01Var	Float (RO)	Primary
1166-1167	Real Power, Phase A	0.01VA	Float (RO)	Primary
1168-1169	Real Power, Phase B	0.01VA	Float (RO)	Primary
1170-1171	Real Power, Phase C	0.01VA	Float (RO)	Primary
1172-1173	Real Power, Total	0.01VA	Float (RO)	Primary
1174-1178	Reserve			
1179	Nominal Frequency	0.01Hz	Int16 (RO)	Same as Address 252
1180	Active Power Factor, Phase A	0.001	Int16 (RO)	Same as Address 277
1181	Active Power Factor, Phase B	0.001	Int16 (RO)	Same as Address 278
1182	Active Power Factor, Phase C	0.001	Int16 (RO)	Same as Address 279
1183	Active Power Factor, Total	0.001	Int16 (RO)	Same as Address 280
1184-1199	Reserve			
1200-1201	Current Demand MAX, Phase A	0.001A	Int32 (RO)	Primary
1202-1203	Data and time the Current Demand MAX, Phase A		Int16 (RO)	BIT12~BIT15:Year BIT8~BIT12:Month BIT0~BIT7:Day
			Int16 (RO)	BIT8~BIT12:Hour BIT0~BIT7: Minute
1204-1205	Current Demand MAX, Phase B	0.001A	Int32 (RO)	Primary
1206-1207	Data and time the Current Demand MAX, Phase B		Int16 (RO) Int16 (RO)	BIT12~BIT15:Year BIT8~BIT12:Month BIT0~BIT7:Day BIT8~BIT12:Hour
1000 1000		0.001.1		BIT0~BIT7: Minute
1208-1209	Current Demand MAX, Phase C	0.001A	Int16 (RO)	Primary
1210-1211	Data and time the Current Demand		Int16 (RO)	BIT12~BIT15:Year BIT8~BIT12:Month BIT0~BIT7:Day
	MAX, Phase C		Int16 (RO)	BIT8~BIT12:Hour BIT0~BIT7: Minute

1212-1213 A	ctive Power Demand MAX, Total	0.01W	Float (RO)	D '
			Tiour (ICO)	Primary
				BIT12~BIT15:Year
			Int16 (RO)	BIT8~BIT12:Month
1214-1215	Data and time the Active Power			BIT0~BIT7:Day
	Demand MAX ,Total			BIT8~BIT12:Hour
			Int16 (RO)	BIT0~BIT7: Minute
1216-1217 R	eactive Power Demand MAX, Total	0.01Var	Float (RO)	Primary
				BIT12~BIT15:Year
			Int16 (RO)	BIT8~BIT12:Month
1218-1219 D	Data and time the Reactive Power			BIT0~BIT7:Day
D	Demand MAX ,Total			BIT8~BIT12:Hour
			Int16 (RO)	BIT0~BIT7: Minute
1220-1221 R	eal Power Demand MAX, Total	0.01VA	Float (RO)	Primary
	cui i over Demand Mi Mi, Tour	0.01 111	Tiour (ICO)	BIT12~BIT15:Year
			Int16 (RO)	BIT8~BIT12:Month
1222-1223 D	Data and time the Real Power		11110 (KO)	BIT0~BIT7:Day
D	Demand MAX ,Total			BIT8~BIT12:Hour
			Int16 (RO)	
				BIT0~BIT7: Minute
1224-1249 R	leserve			
1250-1251 C	Current Demand MAX, Phase A	0.001A	Int32 (RO)	Primary
1252-1253 C	Current Demand MAX, Phase B	0.001A	Int32 (RO)	Primary
1254-1255 C	Current Demand MAX, Phase C	0.001A	Int32 (RO)	Primary
1256-1259 R	leserve			
1260-1261 A	ctive Power Demand , Total	0.01W	Float (RO)	Primary
1262-1263 R	eactive Power Demand , Total	0.01Var	Float (RO)	Primary
1264-1265 R	eal Power Demand, Total	0.01VA	Float (RO)	Primary
1266-1287 R	Leserve			
1288 C	Current coefficient		Int16 (RW)	Used to set the alarm value and read the alarm record value. If the current coefficient is -3, the Phase A overcurrent alarm action value (register 1301) is set to 6000, then the actual alarm value is $6000*10^{(-3)} = 6.000A$
1289 N	leutral current coefficient		Int16 (RW)	Refer to register 1288
1290 V	oltage coefficient		Int16 (RW)	Refer to register 1288
1291 Po	ower coefficient		Int16 (RW)	Refer to register 1288
1292-1299 R	leserve			
т	he first group of alarms: Phase A			When Bit0 is 1, the alarm is enabled, when
1300			Int16 (RW)	Bit0 is 0, the alarm is disabled;

				When Bit1 is 1, the zero-value alarm is
				disabled, when Bit1 is 0, the zero-value
				alarm is enabled.
				Primary. Range: $0 \sim 9999$. If the current
				coefficient is -3, Phase A overcurrent alarm
1301	Alarm action value		Int16 (RW)	action value is set to 6000, then the actual
				alarm value is $6000*10^{-3} = 6.000$ A, other
				situation is similar
1302	Alarm delay time	1s	Int16 (RW)	Range: 0 ~ 9999.
1303	Alarm recovery value		Int16 (RW)	Primary. Range:0~9999
1304	Delay time of Recovery	1s	Int16 (RW)	Range: 0 ~ 9999.

The first group of other alarm settings: refer to Phase A overcurrent alarm

1305	Phase B overcurrent alarm	1310	Phase C overcurrent alarm	1315	Maximum overcurrent alarm		
1320	Neutral overcurrent alarm	1325	Phase A undercurrent alarm	1330	Phase B undercurrent alarm		
1335	Phase C undercurrent alarm	1340	Minimum undercurrent alarm	1345	Neutral undercurrent alarm		
1350	Maximum current unbalance alarm	1355	Current loss alarm	1360	Phase A overvoltage alarm		
1365	Phase B overvoltage alarm	1370	Phase C overvoltage alarm	1375	Maximum phase overvoltage alarm		
1380	AB line overvoltage alarm	1385	BC line overvoltage alarm	1390	CA line overvoltage alarm		
1395	Maximum line overvoltage alarm	1400	Phase A undervoltage alarm	1405	Phase B undervoltage alarm		
1410	Phase C undervoltage alarm	1415	Minimum phase undervoltage alarm	1420	AB line undervoltage alarm		
1425	BC line undervoltage alarm	1430	CA line undervoltage alarm	1435	Minimum line undervoltage alarm		
1440	Maximum phase voltage unbalance alarm	1445	Maximum line voltage unbalance alarm	1450	Line voltage loss alarm		
1455	Total active overpower alarm	1460	Total reactive overpower alarm	1465	Total apparent overpower alarm		
1470	Total active underpower alarm	1475	Total reactive underpower alarm	1480	Total apparent underpower alarm		
1485	Over power factor alarm	1490	Under power factor alarm	1495	Over frequency alarm		
1500	Under frequency alarm	1505	Over total harmonic of Phase A current alarm	1510	Over total harmonic of Phase B current alarm		
1515	Over total harmonic of Phase C current alarm	1520	Over total harmonic of Phase A voltage alarm	1525	Over total harmonic of Phase B voltage alarm		
1530	Over total harmonic of Phase C voltage alarm	1535	Over total even harmonic of Phase A current alarm	1540	Over total even harmonic of Phase B current alarm		
1545	Over total even harmonic of Phase C current alarm	1550	Over total even harmonic of Phase A voltage alarm	1555	Over total even harmonic of Phase B voltage alarm		
1560	Over total even harmonic of Phase C voltage alarm	1565	Over total odd harmonic of Over total odd ha		Over total odd harmonic of Phase B current alarm		
1575	Over total odd harmonic of Phase C current alarm	1580	Over total odd harmonic of Phase A voltage alarm 1585 Over total odd harmon B voltage alarm		Over total odd harmonic of Phase B voltage alarm		
1590	Over total odd harmonic of Phase C voltage alarm	1595	Over total demand of active power alarm	1600	Under total demand of active power alarm		

1605	Reverse phase sequence alarm	1610	DI1 digital input alarm	1615	DI2 digital input alarm
1620	DI3 digital input alarm	1625	DI4 digital input alarm		

The second group of alarm settings: refer to Phase A overcurrent alarm

	ond group of alarm settings: refer to				1
1750	Phase A overcurrent alarm	1755	Phase B overcurrent alarm	1760	Phase C overcurrent alarm
1765	Maximum overcurrent alarm	1770	Neutral overcurrent alarm	1775	Phase A undercurrent alarm
1780	Phase B undercurrent alarm	1785	Phase C undercurrent alarm	1790	Minimum undercurrent alarm
1795	Neutral undercurrent alarm	1800	Maximum current unbalance alarm	1805	Current loss alarm
1810	Phase A overvoltage alarm	1815	Phase B overvoltage alarm	1820	Phase C overvoltage alarm
1825	Maximum phase overvoltage alarm	1830	AB line overvoltage alarm	1835	BC line overvoltage alarm
1840	CA line overvoltage alarm	1845	Maximum line overvoltage alarm	1850	Phase A undervoltage alarm
1855	Phase B undervoltage alarm	1860	Phase C undervoltage alarm	1865	Minimum phase undervoltage alarm
1870	AB line undervoltage alarm	1875	BC line undervoltage alarm	1880	CA line undervoltage alarm
1885	Minimum line undervoltage alarm	1890	Maximum phase voltage unbalance alarm	1895	Maximum line voltage unbalance alarm
1900	Line voltage loss alarm	1905	Total active overpower alarm	1910	Total reactive overpower alarm
1915	Total apparent overpower alarm	1920	Total active underpower alarm	1925	Total reactive underpower alarm
1930	Total apparent underpower alarm	1935	Over power factor alarm	1940	Under power factor alarm
1945	Over frequency alarm	1950	Under frequency alarm	1955	Over total harmonic of Phase A current alarm
1960	Over total harmonic of Phase B current alarm	1965	Over total harmonic of Phase C current alarm	1970	Over total harmonic of Phase A voltage alarm
1975	Over total harmonic of Phase B voltage alarm	1980	Over total harmonic of Phase C voltage alarm	1985	Over total even harmonic of Phase A current alarm
1990	Over total even harmonic of Phase B current alarm	1995	Over total even harmonic of Phase C voltage alarm	2000	Over total even harmonic of Phase A voltage alarm
2005	Over total even harmonic of Phase B voltage alarm	2010	Over total even harmonic of Phase C voltage alarm	2015	Over total odd harmonic of Phase A current alarm
2020	Over total odd harmonic of Phase B current alarm	2025	Over total odd harmonic of Phase C current alarm	2030	Over total odd harmonic of Phase A voltage alarm
2035	Over total odd harmonic of Phase B voltage alarm	2040	Over total odd harmonic of Phase C voltage alarm	2045	Over total demand of active power alarm
2050	Under total demand of active power alarm	2055	Reverse phase sequence alarm	2060	DI1 digital input alarm
	pon or marin				

Note: The action value of unbalance is the register value *0.1%, the action value of power factor is the register value *0.001, the action value of harmonic alarm is the register value *0.01%, and the action value of frequency alarm is the register value *0.01Hz.

Register	Description		Unit	Data Type	Note
(WORD)	Desc	Inpuon		Data Type	Note
2200	Event record 1			UInt16 (RO)	When Bit15 is 1, it means DI. When it is 0, it

							mear	is DO.		
							When	n Bit14 is 1, it me	ans ON.	When it is 0, it
							mean	is OFF.		
							Low	byte indicates DI/D	O numb	er.
220)1			Year, Month		UInt16 (RO)	High	byte:Year; Low by	te: Mont	h
220)2			Day, Hour		UInt16 (RO)	High	High byte: Day ; Low byte: Hour		
220)3			Minute, second		UInt16 (RO)	High	byte:Year; Low by	te: Mont	h
Other ev	vent rec	ords: Refer	to event	record 1						
2204	Ever	nt record 2	2208	Event record 3	2212	Event record 4	2216	Event record 5	2220	Event record 6
2224	Errow	nt record 7	2228	Event record 8	2232	Event record 9	2236	Event record 10	2240	Event record
2224	Ever	n record /	2228	Event record 8	2232	Event record 9	2230	Event record 10	2240	11
2244	Eve	ent record	2249	Event record	2252	E	2250	Essent manual 15	22(0	Event record
2244		10	2248	12	2252	Event record 14	2256	Event record 15	2260	17

Note: To read the most recent 128 event records, you can read the register 20000-20513, refer to the format of register 2200-2203.

16

13

Register (WORD)	Des	cription	Unit	Data Type	Note
2300		Alarm type		UInt16 (RO)	High byte: Alarm group; Low byte: Alarm
					type (refer to 7.4 to view alarms -
					Communication number of alarm
					classification description)
2301	Recent alarm	Year, Month		UInt16 (RO)	High byte: Year; Low byte: Month
2302	record 1	Day, Hour		UInt16 (RO)	High byte: Day ; Low byte: Hour
2303		Minute, second		UInt16 (RO)	High byte: Year; Low byte: Month
2304		Alarm value		UInt16 (RO)	Primary
2305		Alarm status		UInt16 (RO)	1: Alarm acts 0: Alarm released

Other recent alarm records: Refer to recent alarm record 1

12

2306	Alarm record 2	2312	Alarm record 3	2318	Alarm record 4	2324	Alarm record 5	2330	Alarm record 6
					Alarm record 9	2354	Alarm record	2360	Alarm record
2336	Alarm record 7	2342	Alarm record 8	2348			10		11
	Alarm record		Alarm record		Alarm record	2384	Alarm record	2390	Alarm record
2366	12	2372	13	2378	14		15		16

Classification of alarm records (16 for each type of alarm, polling display, latest record covers the earliest record automatically): Refer to recent alarm record 1 for data format.

10000	Phase A overcurrent alarm (16 in total, the same below)	10096	Phase B overcurrent alarm	10192	Phase C overcurrent alarm
10288	Maximum overcurrent alarm	10384	Neutral overcurrent alarm	10480	Phase A undercurrent alarm
10576	Phase B undercurrent alarm	10672	Phase C undercurrent alarm	10768	Minimum undercurrent alarm
10864	Neutral undercurrent alarm	10960	Maximum current unbalance alarm	11056	Current loss alarm
11152	Phase A overvoltage alarm	11248	Phase B overvoltage alarm	11344	Phase C overvoltage alarm
11440	Maximum phase overvoltage alarm	11536	AB line overvoltage alarm	11632	BC line overvoltage alarm

11728	CA line overvoltage alarm	11824	Maximum line overvoltage alarm	11920	Phase A undervoltage alarm
12016	Phase B undervoltage alarm	12112	Phase C undervoltage alarm	12208	Minimum phase undervoltage alarm
12304	AB line undervoltage alarm	12400	BC line undervoltage alarm	12496	CA line undervoltage alarm
12592	Minimum line undervoltage alarm	12688	Maximum phase voltage unbalance alarm	12784	Maximum line voltage unbalance alarm
12880	Line voltage loss alarm	12976	Total active overpower alarm	13072	Total reactive overpower alarm
13168	Total apparent overpower alarm	13264	Total active underpower alarm	13360	Total reactive underpower alarm
13456	Total apparent underpower alarm	13552	Over power factor alarm	13648	Under power factor alarm
13744	Over frequency alarm	13840	Under frequency alarm	13936	Over total harmonic of Phase A current alarm
14032	Over total harmonic of Phase B current alarm	14128	Over total harmonic of Phase C current alarm	14224	Over total harmonic of Phase A voltage alarm
14320	Over total harmonic of Phase B voltage alarm	14416	Over total harmonic of Phase C voltage alarm	14512	Over total even harmonic of Phase A current alarm
14608	Over total even harmonic of Phase B current alarm	14704	Over total even harmonic of Phase C current alarm	14800	Over total even harmonic of Phase A voltage alarm
14896	Over total even harmonic of Phase B voltage alarm	14992	Over total even harmonic of Phase C voltage alarm	15088	Over total odd harmonic of Phase A current alarm
15184	Over total odd harmonic of Phase B current alarm	15280	Over total odd harmonic of Phase C current alarm	15376	Over total odd harmonic of Phase A voltage alarm
15472	Over total odd harmonic of Phase B voltage alarm	15568	Over total odd harmonic of Phase C voltage alarm	15664	Over total demand of active power alarm
15760	Under total demand of active power alarm	15856	Reverse phase sequence alarm	15952	DI1 digital input alarm
16048	DI2 digital input alarm	16144	DI3 digital input alarm	16240	DI4 digital input alarm

Register (WORD)	Description	Unit	Data Type	Note
2500	Function selection of relay 1		UInt16 (RW)	0: Remote control; 1: First group alarm; 2: Second group alarm
2501-2531	Function selection of relay 2-32			Same as function selection of relay 1
2532	Output pulse width of relay 1 (effective by remote control)	1s	Int16 (RW)	When the delay time 0, it is a level trigger mode; when it is greater than 0, it is a pulse trigger mode.
2533-2563	Output pulse width of relay 2-32 (effective by remote control)			Same as output pulse width of relay 1
2564-2569	Reserve			
2570-2571	Initial state of switch input		Int32 (RW)	Bits0:DI1, and so on, Bits31:DI32; 1: Initial state is ON; 0: Initial state is OFF

2572-2573	Initial state of switch output	Int32 (RW)	Bits0:DO1, and so on, Bits31:DO32; 1: Initial state is ON; 0: Initial state is OFF
2574-2579	Reserve		
2580-2581	Current status of switch input	Int32 (RO)	Bits0:DI1, and so on, Bits31:DI32; 1: Initial state is ON; 0: Initial state is OFF
2582-2583	Current status of switch output	Int32 (RW)	Bits0:DO1, and so on, Bits31:DO32; 1: Initial state is ON; 0: Initial state is OFF
2584-2589	Reserve		
2590-2601	Associated alarm configuration of relay 1	Int32(RW)*6	See 2.9 DO settings in the instructions

Associated alarm configuration of other relays: Refer to associated alarm configuration of relay 1.

2602	Associated alarm configuration of relay 2	2614	Associated alarm configuration of relay 3	2626	Associated alarm configuration of relay 4
2638	Associated alarm configuration of relay 5	2650	Associated alarm configuration of relay 6	2662	Associated alarm configuration of relay 7
2674	Associated alarm configuration of relay 8	2686	Associated alarm configuration of relay 9	2698	Associated alarm configuration of relay 10
2710	Associated alarm configuration of relay 11	2722	Associated alarm configuration of relay 12	2734	Associated alarm configuration of relay 13
2746	Associated alarm configuration of relay 14	2758	Associated alarm configuration of relay 15	2770	Associated alarm configuration of relay 16
2782	Associated alarm configuration of relay 17	2794	Associated alarm configuration of relay 18	2806	Associated alarm configuration of relay 19
2818	Associated alarm configuration of relay 20	2830	Associated alarm configuration of relay 21	2842	Associated alarm configuration of relay 22
2854	Associated alarm configuration of relay 23	2866	Associated alarm configuration of relay 24	2878	Associated alarm configuration of relay 25
2890	Associated alarm configuration of relay 26	2902	Associated alarm configuration of relay 27	2914	Associated alarm configuration of relay 28
2926	Associated alarm configuration of relay 29	2938	Associated alarm configuration of relay 30	2950	Associated alarm configuration of relay 31
2962	Associated alarm configuration of relay 32				

Register (WORD)	Description		Unit	Data Type	Note	
3000-3001	Positive active energy(IMP)		1Wh	Float (RO)	Primary energy	
3002-3003	Reverse active energy (EXP)		1Wh	Float (RO)	Primary energy	
3004-3005	Inductive reactive energy (EQL)		1 varh	Float (RO)	Primary energy	
3006-3007	Capacitive rea	ctive energy (EQC)	1 varh	Float (RO)	Primary energy	
3500-3501	Maximum of	Maximum	0.001A	Int32 (RO)	Primary	
3502	Phase A Year and month of current in occurrence			$L_{n+1}(DO)$	High byte: Year; Low byte: Month	
5302				Int16 (RO)		

3503	this month	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3504		Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3505-3509	Maximum of this month	Phase B current in			Same as maximum of Phase A current in this month
3510-3514	Maximum of this month	Phase C current in			Same as maximum of Phase A current in this month
3515-3519	Maximum of this month	neutral current in			Same as maximum of Phase A current in this month
3520-3524	Maximum of current in this	-			Same as maximum of Phase A current in this month
3525-3526		Maximum	0.1V	Int32 (RO)	Primary
3527	Maximum of	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3528	Phase A voltage in	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3529	this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3530-3534	Maximum of this month	Phase B voltage in			Same as maximum of Phase A current in this month
3535-3539	Maximum of this month	Phase C voltage in			Same as maximum of Phase A current in this month
3540-3544	Maximum of phase voltage i	e			Same as maximum of Phase A current in this month
3545-3549	Maximum of this month	AB line voltage in			Same as maximum of Phase A current in this month
3550-3554	Maximum of this month	BC line voltage in			Same as maximum of Phase A current in this month
3555-3559	Maximum of this month	CA line voltage in			Same as maximum of Phase A current in this month
3560-3564		average line voltage			Same as maximum of Phase A current in this month
3565-3566		Maximum	0.01W	Float (RO)	Primary
3567	Maximum of	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3568	Phase A active power	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3569	in this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3570-3574	Maximum of	Phase B active			Same as maximum of Phase A active power in

	power in this r	nonth			this month
3575-3579	Maximum of	f Phase C active			Same as maximum of Phase A active power in
	power in this r	nonth			this month
3580-3584	Maximum of	total phase active			Same as maximum of Phase A active power in
	power in this month				this month
3585-3586		Maximum	0.01Var	Float (RO)	Primary
3587	Maximum of	Year and month of		Int16 (RO)	High byte: Year; Low byte: Month
	Phase A	occurrence			
3588	reactive	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3589	power in this	Minute and		Int16 (RO)	
	month	second of			High byte: Minute; Low byte: Second
		occurrence			
3590-3594	Maximum of	Phase B reactive			Same as maximum of Phase A reactive power in
	power in this r	nonth			this month
3595-3599	Maximum of	Phase C reactive			Same as maximum of Phase A reactive power in
	power in this r	nonth			this month
3600-3604	Maximum of	total reactive power			Same as maximum of Phase A reactive power in
	in this month				this month
3605-3606		Maximum	0.01VA	Float (RO)	Primary
3607	Maximum	Year and month of		Int16 (RO)	High byte: Year; Low byte: Month
	of Phase A	occurrence			The office rear, Low oyce. Month
3608	apparent	Day and hour of		Int16 (RO)	High byte: Day; Low byte: Hour
	power in this	occurrence			High byte. Day, Low byte. Hou
3609	month	Minute and		Int16 (RO)	
	monui	second of			High byte: Minute; Low byte: Second
		occurrence			
3610-3614	Maximum of	Phase B apparent			Same as maximum of Phase A apparent power in
	power in this r	nonth			this month
3615-3619	Maximum of	Phase C apparent			Same as maximum of Phase A apparent power in
	power in this r	nonth			this month
3620-3624	Maximum of t	total apparent power			Same as maximum of Phase A apparent power in
	in this month	1			this month
3625-3626		Maximum	0.001	Int32 (RO)	Primary
3627		Year and month of		Int16 (RO)	High byte: Year; Low byte: Month
	Phase A	occurrence			ingh of the real, how of the month
3628	power factor	Day and hour of		Int16 (RO)	High byte: Day; Low byte: Hour
	in this	occurrence			
3629	month	Minute and		Int16 (RO)	
		second of			High byte: Minute; Low byte: Second
		occurrence			
3630-3634	Phase B pow	er factor in this			Same with Phase A power factor in this month
	month				
3635-3639	Phase C pow	er factor in this			Same with Phase A power factor in this month
	month				

3640-3644	Total power fa	ctor in this month			Same with Phase A power factor in this month
3645-3646		Maximum	0.01	Int32 (RO)	Primary
3647		Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3648	Frequency in this month	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3649		Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3650-3651		Maximum	0.01%	Int32 (RO)	
3652	THD of	Year and month of occurrence		Int16 (RO)	High byte: Year; Low byte: Month
3653	Phase A current in	Day and hour of occurrence		Int16 (RO)	High byte: Day; Low byte: Hour
3654	this month	Minute and second of occurrence		Int16 (RO)	High byte: Minute; Low byte: Second
3655-3659	Maximum T current in this	HD of Phase B month			Same as THD of Phase A current in this month
3660-3664	Maximum T current in this	HD of Phase C month			Same as THD of Phase A current in this month
3665-3669	Maximum T voltage in this	HD of Phase A month			Same as THD of Phase A current in this month
3670-3674	Maximum T voltage in this	HD of Phase B month			Same as THD of Phase A current in this month
3675-3679		HD of Phase C			Same as THD of Phase A current in this month

Minimum in this month, maximum in previous month, minimum in last month: Refer to maximum in this month.

3680	Minimum of Phase A	3685	Minimum of Phase B	3690	Minimum of Phase C
3080	current in this month	3083	current in this month	3090	current in this month
3695	Minimum of neutral	3700	Minimum of average	3705	Minimum of Phase A
3093	current in this month	3700	current in this month	3703	voltage in this month
3710	Minimum of Phase B	3715	Minimum of Phase C	3720	Minimum of average
5/10	voltage in this month	5/15	voltage in this month	5720	voltage in this month
3725	Minimum of AB line	3730	Minimum of BC line	2725	Minimum of CA line
5725	voltage in this month	3730	voltage in this month	3735	voltage in this month
3740	Minimum of average line	3745	Minimum of Phase A active power	3750	Minimum of Phase B active
5740	voltage in this month	5/45	in this month	3730	power in this month
3755	Minimum of Phase C active	3760	Minimum of total active power in	3765	Minimum of Phase A reactive
5755	power in this month	5700	this month	5705	power in this month
3770	Minimum of Phase B	3775	Minimum of Phase C reactive	3780	Minimum of total reactive power
3770	reactive power in this month	3773	power in this month	3780	in this month
3785	Minimum of Phase A apparent	3790	Minimum of Phase B apparent	3795	Minimum of Phase C apparent
3783	power in this month	3790	power in this month	5795	power in this month

3800	Minimum of total apparent power in this month	3805	Minimum of Phase A power factor in this month	3810	Minimum of Phase B power factor in this month
3815	Minimum of Phase C power factor in this month	3820	Minimum of total power factor in this month	3825	Minimum of frequency in this month
3830	Minimum THD of Phase A current in this month	3835	Minimum THD of Phase B current in this month	3840	Minimum THD of phase current in this month
3845	Minimum THD of Phase A voltage in this month	3850	Minimum THD of Phase B voltage in this month	3855	Minimum THD of Phase C voltage in this month
3860	Maximum of Phase A current in last month	3865	Maximum of phase current in last month	3870	Maximum of Phase C current in last month
3875	Maximum of neutral current in last month	3880	Maximum of avreage current in last month	3885	Maximum of Phase A voltage in last month
3890	Maximum of Phase B voltage in last month	3895	Maximum of Phase C voltage in last month	3900	Maximum of average voltage in last month
3905	Maximum of AB line voltage in last month	3910	Maximum of BC line voltage in last month	3915	Maximum of CA line voltage in last month
3920	Maximum of average line voltage in last month	3925	Maximum of Phase A active power in last month	3930	Maximum of Phase B active power in last month
3935	Maximum of Phase C active power in last month	3940	Maximum of total active power in last month	3945	Maximum of Phase A reactive power in last month
3950	Maximum of Phase B reactive power in last month	3955	Maximum of Phase C reactive power in last month	3960	Maximum of total reactive power in last month
3965	Maximum of Phase A apparent power in last month	3970	Maximum of Phase B apparent power in last month	3975	Maximum of Phase C apparent power in last month
3980	Maximum of total apparent power in last month	3985	Maximum of Phase A power factor in last month	3990	Maximum of Phase B power factor in last month
3995	Maximum of Phase C power factor in last month	4000	Maximum of total power factor in last month	4005	Maximum of frequency in last month
4010	Maximum THD of Phase A current in last month	4015	Maximum THD of Phase B current in last month	4020	Maximum THD of Phase C current in last month
4025	Maximum THD of Phase A voltage in last month	4030	Maximum THD of Phase B voltage in last month	4035	Maximum THD of Phase C voltage in last month
4040	Minimum of Phase A current in last month	4045	Minimum of Phase B current in last month	4050	Minimum of Phase C current in last month
4055	Minimum of neutral current in last month	4060	Minimum of average current in last month	4065	Minimum of Phase A voltage in last month
4070	Minimum of Phase B voltage in last month	4075	Minimum of Phase C voltage in last month	4080	Minimum of average voltage in last month
4085	Minimum of AB line voltage in last month	4090	Minimum of BC line voltage in last month	4095	Minimum of CA line voltage in last month
4100	Minimum of average line voltage in last month	4105	Minimum of Phase A active power in last month	4110	Minimum of Phase B active power in last month
4115	Minimum of Phase C active power in last month	4120	Minimum of total active power in last month	4125	Minimum of Phase A reactive power in last month
4130	Minimum of Phase B reactive	4135	Minimum of Phase C reactive	4140	Minimum of total reactive power

	power in last month		power in last month		in last month
4145	Minimum of Phase A apparent		Minimum of Phase B apparent		Minimum of Phase C apparent
4143	power in last month	4150	power in last month	4155	power in last month
4160	Minimum of total apparent		Minimum of Phase A power factor		Minimum of Phase B power
4100	power in last month	4165	in last month	4170	factor in last month
4175	Minimum of Phase C power		Minimum of total power factor in		Minimum of frequency in last
41/5	factor in last month	4180	last month	4185	month
4100	Minimum THD of Phase A		Minimum THD of Phase B current		Minimum THD of Phase C
4190	current in last month	4195	in last month	4200	current in last month
4205	Minimum THD of Phase A		Minimum THD of Phase B voltage		Minimum THD of Phase C
4203	voltage in last month	4210	in last month	4215	voltage in last month

Register (WORD)	Description	Unit	Data Type	Note
4500-4561	2nd-63rd harmonic of Phase A current	0.01%	Int16 (RO)	
4562-4623	2nd-63rd harmonic of Phase B current	0.01%	Int16 (RO)	
4624-4685	2nd-63rd harmonic of Phase C current	0.01%	Int16 (RO)	
4686-4747	2nd-63rd harmonic of Phase A voltage	0.01%	Int16 (RO)	
4748-4809	2nd-63rd harmonic of Phase B voltage	0.01%	Int16 (RO)	
4810-4871	2nd-63rd harmonic of Phase C voltage	0.01%	Int16 (RO)	
4872	THD of Phase A current	0.01%	Int16 (RO)	
4873	THD of Phase B current	0.01%	Int16 (RO)	
4874	THD of Phase B current	0.01%	Int16 (RO)	
4875	THD of Phase A voltage	0.01%	Int16 (RO)	
4876	THD of Phase B voltage	0.01%	Int16 (RO)	
4877	THD of Phase C voltage	0.01%	Int16 (RO)	
4878	Total odd harmonic distortion (TOHD) of Phase A current	0.01%	Int16 (RO)	
4879	TOHD of Phase B current	0.01%	Int16 (RO)	
4880	TOHD of Phase C current	0.01%	Int16 (RO)	
4881	TOHD of Phase A voltage	0.01%	Int16 (RO)	
4882	TOHD of Phase B voltage	0.01%	Int16 (RO)	
4883	TOHD of Phase C voltage	0.01%	Int16 (RO)	
4884	Total even harmonic distortion (TEHD) of Phase A current	0.01%	Int16 (RO)	
4885	TEHD of Phase B current	0.01%	Int16 (RO)	
4886	TEHD of Phase C current	0.01%	Int16 (RO)	
4887	TEHD of Phase A voltage	0.01%	Int16 (RO)	

4888	TEHD of Phase B voltage	0.01%	Int16 (RO)		
4889	TEHD of Phase C voltage	0.01%	Int16 (RO)		
4890-4891	Total RMS value of phase A fundamental current	0.001A	Int32 (RO)	Primary	
4892-4893	Total RMS value of phase B fundamental current	0.001A	Int32 (RO)	Primary	
4894-4895	Total RMS value of phase C fundamental current	0.001A	Int32 (RO)	Primary	
4896-4897	Total RMS value of phase A fundamental voltage	0.1V	Int32 (RO)	Primary	
4898-4899	Total RMS value of phase B fundamental voltage	0.1V	Int32 (RO)	Primary	
4900-4901	Total RMS value of phase C fundamental voltage	0.1V	Int32 (RO)	Primary	
4902-4903	Total RMS value of Phase A harmonic current	0.001A	Int32 (RO)	Primary	
4904-4905	Total RMS value of Phase B harmonic current	0.001A	Int32 (RO)	Primary	
4906-4907	Total RMS value of Phase C harmonic current	0.001A	Int32 (RO)	Primary	
4908-4909	Total RMS value of Phase A harmonic voltage	0.1V	Int32 (RO)	Primary	
4910-4911	Total RMS value of Phase B harmonic voltage	0.1V	Int32 (RO)	Primary	
4912-4913	Total RMS value of Phase C harmonic voltage	0.1V	Int32 (RO)	Primary	
4914-5399	Reserve				
5400	Transmission type and signal selection Setting of the 1st transmissi on output		Int16 (RW)	Highbyte:Transmissiontype(1:4-20mA,2:0-20mA,3:1-5V,4:0-5V)LowByte:SignalSelection (Refer toTable3in7.5SystemSetupAnalogOutputSettings)	For example: 4-20mA is selected for the transmission type, and phase A current is selected for the signal. The corresponding value of the high point is 5000, and the corresponding value of the low point is 0, and the actual decimal point of the current
5401	Corresponding value of the high point		Int16 (RW)	Primary	display is 3 bits. When the actual current
5402	Corresponding value of the low point		Int16 (RW)	Primary	value of phase A is 5.000A, the transmission output is 20mA. When the actual current value of phase A current is 0, the

			output is 4 mA. When
			the actual current value of
			phase A is 2.500 A, the
			transmission output is 12
			mA.

Other settings of transmission output: refer to setting of the 1st transmission output

5403	Setting of the 2nd transmission output	5406	Setting of the 3rd transmission output	5409	Setting of the 4th transmission output
5412	Setting of the 5th transmission output	5415	Setting of the 6th transmission output	5418	Setting of the 7th transmission output
5421	Setting of the 8th transmission output	5424	Setting of the 9th transmission output	5427	Setting of the 10th transmission output
5430	Setting of the 11th transmission output	5433	Setting of the 12th transmission output	5436	Setting of the 13th transmission output
5439	Setting of the 14th transmission output	5442	Setting of the 15th transmission output	5445	Setting of the 16th transmission output
5448	Setting of the 17th transmission output	5451	Setting of the 18th transmission output	5454	Setting of the 19th transmission output
5457	Setting of the 20th transmission output	5460	Setting of the 21st transmission output	5463	Setting of the 22nd transmission output
5466	Setting of the 23rd transmission output	5469	Setting of the 24th transmission output	5472	Setting of the 25th transmission output
5475	Setting of the 26th transmission output	5478	Setting of the 27th transmission output	5481	Setting of the 28th transmission output
5484	Setting of the 29th transmission output	5487	Setting of the 30th transmission output	5490	Setting of the 31st transmission output
5493	Setting of the 32nd transmission output	5496		5499	

Register (WORD)	D	escription	Unit	Data Type	Note				
5600	Setting of the 1st	Input type and decimal point of display		Int16 (RW)	High byte: Input type (1:4-20mA, 2:0-20mA, 3:1-5V, 4:0-5V) Low Byte: Decimal point of display (0-3)	For example: 4-20mA is selected for the input type, and decimal point is 3 digits. The display value of input high point is set to 5000, and the display value of input low			
5601	analog input	Display value of input high point		Int16 (RW)	The display value of input high point (0-9999)	point is 0. When the analog input is 20mA, the display value			
5602		Display value of input low point		Int16 (RW)	The display value of input low point (0-9999)	is 5.000, when the analog input is 4mA, the display value is 0.000, and when the analog input is 12mA,			

	the display value is 2.500.
--	-----------------------------

-					
5603	Setting of the 2nd analog input	5606	Setting of the 3rd analog input	5609	Setting of the 4th analog input
5612	Setting of the 5th analog input	5615	Setting of the 6th analog input	5618	Setting of the 7th analog input
5621	Setting of the 8th analog input	5624	Setting of the 9th analog input	5627	Setting of the 10th analog input
5630	Setting of the 11th analog input	5633	Setting of the 12th analog input	5636	Setting of the 13th analog input
5639	Setting of the 14th analog input	5642	Setting of the 15th analog input	5645	Setting of the 16th analog input
5648	Setting of the 17th analog input	5651	Setting of the 18th analog input	5654	Setting of the 19th analog input
5657	Setting of the 20th analog input	5660	Setting of the 21st analog input	5663	Setting of the 22nd analog input
5666	Setting of the 23rd analog input	5669	Setting of the 24th analog input	5672	Setting of the 25th analog input
5675	Setting of the 26th analog input	5678	Setting of the 27th analog input	5681	Setting of the 28th analog input
5684	Setting of the 29th analog input	5687	Setting of the 30th analog input	5690	Setting of the 31st analog input
5693	Setting of the 32nd analog input				

Other settings of analog input: Refer to the 1st analog input settings

Register (WORD)	Description	Unit	Data Type	Note
5696-5727	Inverse value of No.1-32 analog Input		Int16 (RO)	Inverse value of No.1-32 analog Input
5728-5759	The actual value of No.1-32 analog Input	0.001	Int16 (RO)	The unit is mA when the input selection is 4-20mA or 0-20mA, and the unit is V when 1-5V or 0-5V is selected.

Note: 1. Read-write property: "RO" is read-only, parameter is read with 0X03H command; "R/W" is readable and writable, and system parameter is written with 0X10H command. Do not write data to unlisted or unwritable Address.

2. For Int32 type data, the high bits are in the front and the low bits are in the back

2. Correspondence between communication value and actual value

It is agreed that Val_t is the communication readout value and Val_s is the actual value.

2.1 Voltage, Current, Power Factor, Frequency, Unbalance (Secondary)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies 1 word. The correspondence between the communication value and the actual secondary measurement value is shown in the following table:

Applicable parameters	Resolution	Correspondence	Unit
Voltage, Uan, Ubn, Ucn, Uab, Ubc, Uca	0.1V	Val_s=Val_t*0.1	V
Current , I_A , I_B , I_C	0.001A	Val_s=Val_t*0.001	А
Power factor, PF_A , PF_B , PF_C , PF_{\pm}	0.001	Val_s=Val_t*0.001	No unit
Frequency, F	0.01Hz	Val_s=Val_t*0.01	Hz
Unbalance, I(ubl), ULL(ubl), ULN(ubl)	0.1	Val_s=Val_t*0.1	%

For example: To read phase A voltage Uan, the data can be read at address 243 in Int16eger reading mode by MODSCAN, the communication read-out value Val_t is 2200, then Val_t = 2200*0.1=220V.

2.2 Voltage, Current, Power Factor, Frequency, Unbalance (Primary)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. The voltage and current occupy 2 words, and the power factor, frequency, and unbalance occupy 1 byte. The correspondence between the communication value and the actual secondary measurement value is shown in the following table:

Applicable parameters	Resolution	Correspondence	Unit
Voltage, Uan、Ubn、Ucn、Uab、Ubc、Uca	0.1V	Val_s=Val_t*0.1	V
Current , I_A , I_B , I_C	0.001A	Val_s=Val_t*0.001	А
Power factor, PF_A , PF_B , PF_C , PF_{Total}	0.001	Val_s=Val_t*0.001	No unit
Frequency, F	0.01Hz	Val_s=Val_t*0.01	Hz
Unbalance, I(ubl), ULL(ubl), ULN(ubl)	0.1	Val_s=Val_t*0.1	%

For example: To read phase A voltage Uan, the data can be read at address 1120-1121 in Int16eger reading mode by MODSCAN, the communication read-out value is 9 at address 1120, communication read-out value is 10176 at address 1121, that is, communication read-out value Val_t is 9*65536+10176 = 600000, then Val_s = Val_t*0.1=600000*0.1=60kV.

2.3 Active power, reactive power, apparent power and energy (Secondary side; W/Var/VA/kWh)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies 1 word. The power resolution 0.01, the correspondence between the communication value and the actual value is as follows: Val_s=Val_t*0.01; The energy resolution is 1, and the correspondence between the communication value and the actual value is as follows: Val_s=Val_t*1; where Val_t=first word×65536+second word.

For example: To read phase A active power Pa, the data can be read at address 253-254 in Int16eger reading mode by MODSCAN, the communication read-out value is 1 at address 253 and 26000 at address 254, that is $Val_t=1\times65536+26000=91536$, then Val s = Val t*0.01 = 915.36W.

For example: To read positive active energy IMP, the data can be read at address 300-301 MODSCAN in Int16eger reading mode by MODSCAN, the communication read-out

value is 0 at address 300 and 19000 at address 301, that is, Val t=0x65536+19000=19000, then Val s=Val t*1=19000Wh=19kWh.

2.4 Active power, reactive power, apparent power and energy (primary side; W/Var/VA/kWh)

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies a float (two words). The power resolution is 0.01, and the correspondence between the communication value and the actual value is as follows: $Val_s=Val_t*0.01$; the energy resolution is 1, and the correspondence between the communication value and the actual value is as follows: $Val_s=Val_t*0.01$; the energy resolution is 1, and the correspondence between the communication value and the actual value is as follows: $Val_s=Val_t*1$; Val_t is calculated as follows:

The floating point variable data type value uses the sign bit to represent the sign of the data, and the exponent and mantissa represent the size of the data. The data format used by the meter is the IEEE754 data format, which has 24-bit precision, and the high bit of mantissa is always "1", so it is not saved and the distribution of bits is as follows:

1 sign bit, 8 exponent bits, 23 mantissas bits, the sign bit is the highest bit, and the mantissa is the lowest 23 bits.

Specific examples are as follows:

Read-out number (2word, arranged from highest to lowest ,4 bytes in total (0x474B, 0xAC00), 32bit):

Sign bit S , Index bit E , Mantissa M

Sign bit S=0, ("1" is negative, "0" is positive)

Calculate the index E=10001110 and convert it into a decimal number 142;

Calculate the mantissa M=100 1011 1010 1100 0000 0000 into a decimal number 4959232.

Calculation formula: primary side power

$$= (-1)^{S} \times 2^{(E-127)} \times \left(1 + \frac{M}{2^{23}}\right)$$

The result of the above example is as follows:

$$(-1)^{0} \times 2^{(142 - 127)} \times \left(1 + \frac{4959232}{2^{23}}\right) = 52140 = 521.4 \text{kWh}$$

For example: To read phase A active power PA, the data can be read at address 1150-1151 in Floating Pt reading mode by MODSCAN, the read-out value Val_t=110000, then Val_s =Val_t*0.01=1100W.

For example: To read phase positive active energy IMP, the data can be read at address 3050-3051 in Floating Pt reading mode by MODSCAN, the read-out value Val_t=589000, then Val_s = Val_t*1=589000Wh=589kWh.

2.5 Harmonic data of voltage and current

The series of measured values are read with 03 command of the Modbus-RTU communication protocol. Each item occupies 1 word. The resolution is 0.01, and the correspondence between the communication value and the actual value is as follows: Val s=(Val t*0.01).

For example: To read current 3rd harmonic content, the data can be read at address 4501 in Integer reading mode by MODSCAN, the communication readout Val t is 157, then Val s = (Val t*0.01)%=1.57%.

2.6 Demand

Demand includes three phase currents and active power, reactive power, and the maximum demand of apparent power and time of

occurrence. The demand data format is as follows:

Addre ss	Address 1	Address 2	Address 3			Add	Address 4		
	H16	L16	H8		L8	H8	L8		
INT	Г32	H4	L4	Lð	110	Lö			
nt	Conte		Year (Only a bit is reserved, ten bit needs to be filled in according to the current time)	Mon th	Day	Hour	Minute		

Note: H8 indicates eight high bits, L8 indicates eight low bits, and others are similar.

Take reading the maximum demand of phase A current (1200~1203) as an example, the read-out value is 0x0000 0x157C 0x7512 0x0E16

Addre ss	1200	1201	1202			1203		
	H16	L16	H8		L8	H8	L8	
Conto	Conte		H4	L4	Lo	110	Lo	
nt	0x0000	0x157C	0x7	0x5	0x12	0x0E	0x16	
m	Demand value		Year	Mon th	Day	Hour	Minute	
Analy sis	0*65536+0	x157C=5500	17 (ten bit needs to be filled in according to the current time)	5	18	14	22	

The maximum demand for Phase A current is: At 14:22 on May 18, 2017, the demand value is 5.500A.

2.7 Event Record

Event record 1 - event record 16, recorded in order of time, that is, event record 1 records the data of the most recent event, and event record 16 records the data of the earliest event, the data format of each event record is as follows:

Addr ess				Address 2 Address 3		Address 4									
				H8					L8	H8	L8	H8	L8	H8	L8
内容	B7	B6	B5	B4	B3	B2	B1	B0	Lõ	по	Lõ	по	Lo	по	Lo
Cont ent	0: DO 1: DI	0:Open 1:Close d							Switch number	Year	Mon th	Day	Hour	Min ute	Seco nd

Take reading the event record 1 (2200~2203) as an example, the read-out value is **0x4000 0x1101 0x160D 0x3820.**

Addr ess		2200									2201		2202		2203	
				H8					L8	H8	L8	H8	L8	H8	L8	
	B7	B6	B5	B4	В3	B2	B1	B0	Lo	По		по	Lo	110	Lo	
Cont	0	1	0	0	0	0	0	0	0	0x11	0x01	0x16	0x0 D	0x38	0x20	
ent	0: DO 1: DI	0:Open 1:Close d							Switch number	年 Year	Mon th	Day	Hour	Min ute	Seco nd	
Anal	DO	Closed							DO1	17	1	22	14	56	32	

ysis

DO1 changed from open to closed at 14:56:32 on January 22,2017.

2.8 Alarm Record

The data format of the alarm record is as follows:

Address	Address 1		Addr	ldress 2 Address 3		Address 4		Address 5	Address 6	
	H8	L8	H8	L8	H8	L8	H8	L8		
Content	Alarm group 0: The alarms of the first group 1: The alarms of the second group	Alarm type (Refer to 7.4 Alarms viewing - entry number for alarm classification description)	Yea r	Mo nth	Da y	Ho ur	Min ute	Sec ond	Alarm value	Alarm status

Take reading the latest alarm record (2300-2305) as an example, the read-out value is 0x000C 0x1101 0x160E 0x3820 0x0960 0x0001.

Address	2300			2301		2302		03	2304	2305
Content	H8	L8	H8	L8	H8	L8	H8	L8		
	000	000	0x1	0x0	0x1 0	0x0	0x3	0x2	00060	0x0001
	0x00	0x0C	1 1	1	6	E	8	0	0x0960	
	A 100000 000000		Yea	Mo	Dav	Hou	Min	Sec	Alarm	Alarm
	Alarm group	Alarm type	r	nth	Day	r	ute	0x30x2 0x0x800xMinSecAuteondva	value	status
A	The alarms of the	Phase A	17	1	22	14	56	32	2400	Act
Analysis	first group	overvoltage alarm		I						

Phase A overvoltage alarm (the first group of alarms) occurs at 14:56:32, January 22, 2017, the alarm value is 240.0V.

2.9 DO Settings

Associated alarm configuration format of do settings is as follows:

Address	Address 1		Address 2							
	H16			L16						
			INT32	NT32						
	B31	B30	B29		B2	B1	В0			
Content	Associated with the alarm number 31 of the first group (Alarm of over active power)			and so on			Associated with the alarm number 0 of the first group (phase A overcurrent alarm) (1: valid; 0: invalid)			
Address	Address 3	Address 4								

	H16							L16						
Content							Π	INT32						
			B31		В	14	E	313		B2	B1	В0		
												Associated with		
												the alarm		
	Associated with the alarm								and so			number 32 of		
	number 63 of the first group								on			the first group		
	(DI2 alarm)											(Alarm of over		
												reactive power)		
Address	Address 5							Address 6						
	H16									L16	j			
	INT32													
	В3	В3	B2		E	;			B1			во		
	1	0	9		2									
Content												Associated with		
							Assoc	iated w	ith the alarm	numbe	r 65 of	the alarm		
								st group (DI4	number 64 of					
									5	the first group				
										(DI3 alarm)				
Address	Address 7							Address 8						
	H16 L16													
	I								INT32					
	B31 F						B30	B29		B2	B1	B0		
												Associated with		
Content												the alarm		
	Associated with the alarm number 31 of								and so		number 0 of the			
	the second group (Alarm of over active								on			second group		
	power)										(phase A			
												overcurrent		
A 11				A 11 0						A 11	10	alarm)		
Address				Address 9				Address 10						
	H16 L16													
									INT32 B13 B2 B1 B0					
	B31						D14	Б15		D2	DI	Associated with		
												the alarm		
Content	Associated with the alarm number 63 of											number 31 of		
									and so			the second		
		the second group (DI2 alarm)							on			group (Alarm of		
												over reactive		
												power)		
Address	Address 11								1	Addro	ess 12	ro)		
				H16				Address 12 L16						
Content								INT32						
	B3 B3 B2 B							B1			B0			
	76								20					

1	0	9	2		
				Associated with the alarm number 65 of the second group (DI4 alarm)	Associated with the alarm number 64 of the second group (DI3 alarm)

Take reading the associated alarm settings of DO1 (2590-2601) as an example, the read-out value is 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

Address	2590	2591								
	H16	L16								
	INT32									
	B31	B30	B29			B2	B1	B0		
	0	0	0	0		1	1	1		
								Associated with		
Content				and so on				the alarm		
	Associated with the alarm number							number 0 of the		
	31 of the first group (Alarm of						first group			
	over active power)							(phase A		
								overcurrent		
								alarm)		

The remaining addresses in this example are all 0 and are no longer listed.

If the current DO1 function is controlled by the alarm of the first group, in this example, DO1 is associated with the phase A overcurrent alarm, the phase B overcurrent alarm, and the phase C overcurrent alarm of the first group.